Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014.

За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим. Большое внимание уделяется геометрическому смыслу основных понятий. В книге прослеживается тесная связь предмета с приложениями, в особенности с механикой. При изложении делается упор не на формулы, а на геометрический смысл основных определений и теорем. Автор знакомит читателя с такими понятиями, как многообразия, однопараметрические группы диффеоморфизмов, касательные пространства и расслоения. В число рассматриваемых примеров из механики входит исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс. Книга предназначена для студентов и аспирантов математических факультетов университетов и вузов с расширенной программой по математике.

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014


Фазовые пространства.
Теория обыкновенных дифференциальных уравнений — одно из основных орудий математического естествознания. Эта теория позволяет изучать всевозможные эволюционные процессы, обладающие свойствами детерминированности, конечномерности и дифференцируемости. Прежде чем дать точные математические определения, рассмотрим несколько примеров.

Оглавление.
Предисловие к третьему изданию.    
Предисловие к первому изданию.    
Некоторые постоянно употребляемые обозначения.    
Глава 1.Основные понятия.
Глава 2.Основные теоремы.
Глава 3.Линейные системы.
Глава 4.Доказательства основных теорем.
Глава 5.Дифференциальные уравнения на многообразиях.
Программа экзамена.
Образцы экзаменационных задач.
Предметный указатель.

Купить .
Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-21 15:55:07