Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И., 2019.
В книге изложен ряд основных идей и методов, применяемых дли исследования обыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т. д.). Теория уравнений с частными производными первого порядка изложена на основе геометрии контактной структуры. В книгу включены классические и современные результаты теории динамических систем: структурная устойчивость, У-системы, аналитические методы локальной теории в окрестности особой точки или периодического решения (нормальные формы Пуанкаре), теория бифуркации фазовых портретов при изменении параметров (мягкое и жесткое возбуждение автоколебаний при потере устойчивости), удвоение периода Фейгенбаума, теорема Дюлака и др. Книга рассчитана на широкий круг математиков и физиков — от студентов до преподавателей и научных работников.
Специальные уравнения.
При исследовании дифференциальных уравнений применяются методы всех отделов математики. В настоящей главе обсуждаются отдельные специальные уравнения и типы уравнений. Особое внимание обращается, с одной стороны, на значение рассматриваемых уравнений для приложений и с другой — на связи методов исследования с различными общематематическими вопросами (разрешение особенностей, диаграммы Ньютона, группы Ли симметрий и т.д.). Глава заканчивается элементарной теорией стационарного одномерного уравнения Шредингера и геометрической теорией нелинейного уравнения второго порядка.
Содержание.
Предисловие.
Некоторые используемые обозначения.
Глава 1.Специальные уравнения.
Глава 2.Уравнения с частными производными первого порядка.
Глава 3.Структурная устойчивость.
Глава 4.Теория возмущений.
Глава 5.Нормальные формы.
Глава 6.Локальная теория бифуркаций.
Образцы экзаменационных задач.
Купить .
Теги: Арнольд :: книги по математике :: математика :: дифференциальные уравнения
Смотрите также учебники, книги и учебные материалы:
- Уравнения Лагранжа, Воронца, Чаплыгина в задачах динамики мобильных роботов, Зацепин М.Ф., Мартыненко Ю.Г., Тиньков Д.В., 2005
- Дифференциальные уравнения, Примеры и задачи, практическое руководство, Коструб И.Д., 2017
- Математическое моделирование динамики транспортных потоков мегаполиса, Семенов В.В.
- Mathcad 14 для студентов и инженеров, русская версия, Очков В.Ф., 2009
- Исследование операций, Елтаренко Е.А., 2007
- Введение в криптографию, Ященко В.В., 2001
- Дифференциальные уравнения, То решаем, то рисуем, Аносов Д.В., 2008
- Энтропии и фракталы в анализе данных, Чумак О.В., 2011