Из предисловия к первому изданию целесообразно напомнить, что книга написана в качестве учебного пособия по курсу теории чисел для физико-математических факультетов педагогических институтов и предназначается не только для студентов стационара, но и заочных факультетов. Поэтому изложение проводится по возможности в доступной форме, причем особое внимание уделяется разъяснению вводимых понятий.
Материал книги в основном излагается в объеме, предусмотренном программой, и в той же последовательности.
Во второе издание книги наряду с довольно многочисленными мелкими исправлениями и уточнениями внесен ряд более значительных изменений и дополнений.
XIX век. Развитие теории чисел в России.
а) Для развития теории чисел в XIX в. характерны, во-первых, фундаментальные работы Гаусса (которые мы уже отмечали) и дальнейшая разработка глубоких идей, изложенных в его трудах; далее, значительное укрепление аналитических методов исследования и успешное решение различных проблем в теории распределения простых чисел, наконец, создание новых направлений, а именно геометрической теории чисел и теории трансцендентных чисел.
б) Работы Гаусса не были сразу поняты его современниками, однако в дальнейшем они нашли многих продолжателей, в первую очередь среди немецких математиков.
Важную роль в разработке идей Гаусса, изложенных в его «Арифметических исследованиях», сыграл Дирихле, в частное и, его работы оказали большое влияние на развитие теории алгебраических чисел и аналитических методов в теории чисел.
ОГЛАВЛЕНИЕ.
Предисловие ко второму изданию.
Введение.
§1. Предмет и основные разделы теории чисел.
§2. Краткие сведения из истории развития теории чисел.
Глава I. Теория делимости.
§1. Делимость, деление с остатком.
§2. Наибольший общий делитель.
§3. Наименьшее общее кратное.
§4. Простые числа. Разложение на простые множители.
Глава II. Классы поданному модулю. Сравнения и классы.
§1. Сравнения и их основные свойства.
§2. Классы по данному модулю.
§3. Системы вычетов.
§4. Основные свойства функции Эйлера.
§5. Теоремы Эйлера и Ферма.
Глава III. Сравнения с неизвестной величиной.
§1. Классы решений сравнения произвольной степени.
§2. Сравнения первой степени.
§3. Правильные конечные цепные дроби.
§4. Решение сравнений первой степени с помощью цепных дробей.
§5. Системы сравнений первой степени.
§6. Сравнения n-ой степени по простому модулю.
§7. Сравнения n-ой степени по составному модулю.
§8. Сравнения второй степени общего вида.
§9. Общие сведения о двучленных сравнениях второй степени по нечетному простому модулю.
§10. Символ Лежандра.
Глава IV. Степенные вычеты.
§1. Показатели и их основные свойства.
§2. Существование и число классов, принадлежащих показателю.
§3. Индексы и их свойства.
§4. Применение индексов к решению сравнений.
Глава V. Арифметические приложения теории сравнений.
§1. Вычисление остатков при делении на данное число. Установление признаков делимости с помощью сравнений.
§2. Определение длины периода, получающегося при обращении обыкновенной дроби в десятичную.
§3. Проверка результатов арифметических действий.
Глава VI. Аппроксимация действительных чисел рациональными числами.
§1. Представление иррациональных чисел правильными бесконечными цепными дробями.
§2. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя.
§3. Квадратические иррациональности и периодические цепные дроби.
§4. Решение уравнения Пелля.
§5. Представление действительных чисел цепными дробями общего вида.
Глава VII. Алгебраические и трансцендентные числа.
§1. Иррациональные числа.
§2. Поле алгебраических чисел.
§3. Теорема Лиувилля. Трансцендентные числа.
Глава VIII. Числовые функции.
§1. Число и сумма делителей данного числа.
§2. Совершенные числа. Специальные простые числа.
§3. Функции [х] и {х}.
§4. Распределение простых чисел.
§5. Аддитивные проблемы теории чисел.
Указания и ответы к упражнениям.
Таблицы индексов.
Литература.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория чисел, Михелович Ш.Х., 1967 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - pdf - Яндекс.Диск.
Дата публикации:
Теги: учебник по математике :: математика :: Михелович
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Математика XIX века, геометрия, Теория аналитических функций, Лаптев Б.Л., Маркушевич А.И., Медведев Ф.А., 1981
- Элементы математической теории управления движением, учебное пособие, Ландо Ю.К., 1984
- Математика XIX века, математическая логика, алгебра, теория чисел, теория вероятностей, Колмогоров А.Н., Башмакова И.Г., Гнеденко Б.В., 1978
- Геометрия, 10-11 классы, Погорелов А.В., 2014
Предыдущие статьи:
- Математический анализ, Введение в анализ, Виленкин Н.Я., Мордкович А.Г., 1983
- Математика для экономистов, математический анализ, курс лекций, Малугин В.А., 2005
- Математика для экономистов, линейная алгебра, курс лекций, Малугин В.А., 2006
- Что такое математическая биофизика, Романовский Ю.М., Степанова Н.В., Чернавский Д.С., 1971