учебник по математике

Пособие по математике для поступающих в вузы, Дорофеев Г.В., Потапов М.К., Розов Н.X., 1972

Пособие по математике для поступающих в вузы, Дорофеев Г.В., Потапов М.К., Розов Н.X., 1972.

   Книга предназначена для лиц, желающих углубить и расширить свои знания по математике перед вступительным экзаменом в высшее учебное заведение. Особенно полезной она может оказаться слушателям подготовительных отделений вузов. Учителя средней школы найдут в ней богатый материал по некоторым узловым темам школьной программы.
В книге изложены отдельные важные теоретические вопросы, подкрепленные большим количеством разобранных конкурсных задач. Особое внимание авторы уделяют логике решений, подробно обсуждают типичные ошибки поступающих. Книга снабжена упражнениями, взятыми из опыта приемных экзаменов.
При подготовке третьего издания книга подверглась переработке, имевшей целью учесть опыт приемных экзаменов 1970 и 1971 гг.

Пособие по математике для поступающих в вузы, Дорофеев Г.В., Потапов М.К., Розов Н.X., 1972
Скачать и читать Пособие по математике для поступающих в вузы, Дорофеев Г.В., Потапов М.К., Розов Н.X., 1972
 

Логический синтез каскадных схем, Закревский А.Д., 1981

Логический синтез каскадных схем, Закревский А.Д., 1981.

   Книга посвящена важным проблемам современной вычислительной техники. Излагаются вопросы логического проектирования каскадных схем (в частности, программируемых логических матриц) — широкого класса дискретных устройств, порожденного технологией больших интегральных схем. Описываются эффективные методы решения разнообразных задач анализа и синтеза этих устройств. В их основе лежат матричное представление структуры устройств и векторно-матричная интерпретация некоторых разделов булевой алгебры. Особое внимание уделяется реализации предлагаемых алгоритмов на ЭВМ.
Книга предназначена для специалистов в области вычислительной техники, дискретной математики и лиц, интересующихся использованием ЭВМ для решения логических задач.

Логический синтез каскадных схем, Закревский А.Д., 1981
Скачать и читать Логический синтез каскадных схем, Закревский А.Д., 1981
 

Математические методы для линейных и нелинейных уравнений, Проекционные АВS-алгоритмы, Абаффи Й., Спедикато Э., 1996

Математические методы для линейных и нелинейных уравнений, Проекционные АВS-алгоритмы, Абаффи Й., Спедикато Э., 1996.

   Книга известных специалистов (Венгрия, Италия), посвященная оригинальному классу квазиньютоновских алгоритмов для решения недоопределенных, переопределенных и определенных систем линейных и нелинейных уравнений, включая большие разреженные системы. В линейном случае метод включает в себя все известные алгоритмы, сходящиеся за конечное число шагов, не превышающее числа уравнений, причем прямые методы представляются в виде конечного итерационного процесса. Преимущество перед алгоритмами из распространенных пакетов линейной алгебры особенно заметно на плохо обусловленных тестовых задачах.
Для тех, кто интересуется теорией численных методов решения систем линейных и нелинейных уравнений, задач идентификации, а также для тех, кто разрабатывает или использует соответствующие пакеты программ.


Математические методы для линейных и нелинейных уравнений, Проекционные АВS-алгоритмы, Абаффи Й., Спедикато Э., 1996
Скачать и читать Математические методы для линейных и нелинейных уравнений, Проекционные АВS-алгоритмы, Абаффи Й., Спедикато Э., 1996
 

Метод сплайнов и решение некорректных задач теории приближений, Гребенников А.И., 1983

Метод сплайнов и решение некорректных задач теории приближений, Гребенников А.И., 1983.

   В монографии изложены элементы теории сплайнов на основе двух подходов: метода регуляризации А. Н. Тихонова и определения сплайна как гладко склеенной кусочной функции. Найдены общие условия оптимальности (по порядку) методов решения широкого класса линейных и нелинейных некорректных задач теории приближений, что позволило теоретически обосновать оптимальные свойства метода регуляризации А. Н. Тихонова и, в частности, при дискретном задании информации — оптимальные свойства метода сплайнов. Построены эффективные методы аппроксимации и дифференцирования функций на основе локальных базисных сплайнов. Приводится постановка и решение задачи изогеометрической аппроксимации функций, т. е. приближения функций с сохранением их геометрических свойств. Разработанные методы реализованы в виде программ для ЭВМ и применены к решению ряда прикладных задач.
Книга предназначена для научных работников, аспирантов и студентов старших курсов, специализирующихся в области прикладной математики.

Метод сплайнов и решение некорректных задач теории приближений, Гребенников А.И., 1983
Скачать и читать Метод сплайнов и решение некорректных задач теории приближений, Гребенников А.И., 1983
 

Алгебры Ли и группы Ли, Серр Ж.П., 1969

Алгебры Ли и группы Ли, Серр Ж.П., 1969.

   Книга известного французского математика, уже знакомого нашему читателю по переводам его книг „Алгебраические группы и поля классов" и „Когомологии Галуа“ (изд-во „Мир“, 1968), содержит изложение основ теории алгебр Ли и групп Ли, а также теорию комплексных полупростых алгебр Ли. Наряду с классическим случаем вещественных и комплексных групп Ли она охватывает случай p-адических групп Ли и является единственной в мировой литературе книгой, содержащей подробное изложение теории p-групп с точки зрения классических методов теории групп Ли.
Книга рассчитана на студентов старших курсов и аспирантов. Может быть полезна математикам различных специальностей.

Алгебры Ли и группы Ли, Серр Ж.П., 1969
Скачать и читать Алгебры Ли и группы Ли, Серр Ж.П., 1969
 

Математика, 6 класс, Козлов В.В., Никитин А.А., Белоносов B.C., Мальцев А.А., 2016

Математика, 6 класс, Козлов В.В., Никитин А.А., Белоносов B.C., Мальцев А.А., 2016.

   Данная книга — вторая в серии трёхуровневых учебников по математике, созданных коллективом авторов из числа научных сотрудников Математического института им. В.А. Стеклова Российской академии наук, Института математики им. С.Л. Соболева Сибирского отделения Российской академии наук, Института педагогических исследований одарённости детей Российской академии образования, профессоров и доцентов Московского государственного университета им. М.В. Ломоносова и Новосибирского государственного университета.
Прежде всего авторы отказались от традиционного деления математики на несколько дисциплин: арифметику, алгебру, геометрию, тригонометрию, основы анализа и так далее. Все перечисленные предметы предлагается изучать в общем курсе. Это подчёркивает единство математической науки, тесную взаимосвязь развиваемых в ней идей и методов, фундаментальную роль математики как важного элемента общей культуры.

Математика, 6 класс, Козлов В.В., Никитин А.А., Белоносов B.C., Мальцев А.А., 2016
Скачать и читать Математика, 6 класс, Козлов В.В., Никитин А.А., Белоносов B.C., Мальцев А.А., 2016
 

Краткий курс теории аналитических функций, Маркушевич А.И.

Краткий курс теории аналитических функций, Маркушевич А.И.

   Эта книга представляет собой учебник теория аналитических функций в объеме, предусмотренном программой физико-математических факультетов университетов. Многочисленные примеры, служащие для иллюстрации общих положений и методов, напечатаны здесь петитом. Петитом же напечатаны и некоторые (впрочем, немногие) вопросы и детали, дополняющие основной курс. Читателя, желающего углубить свои познания в этой области, автор отсылает к монографиям, список которых приведен в книге.

Краткий курс теории аналитических функций, Маркушевич А.И.
Скачать и читать Краткий курс теории аналитических функций, Маркушевич А.И.
 

Векторный анализ, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002

Векторный анализ, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002.

   Предлагаемый сборник задач можно рассматривать как краткий курс векторного анализа, в котором сообщаются без доказательства основные факты с иллюстрацией их на конкретных примерах. Поэтому предлагаемый задачник может быть использован, с одной стороны, для повторения основ векторного анализа, а с другой — как учебное пособие для лиц, которые, не вдаваясь в доказательства тех или иных предложений и теорем, хотят овладеть техникой операций векторного анализа. При составлении задачника авторы использовали материал, содержащийся в имеющихся курсах векторного исчисления и сборниках задач. Значительная часть задач составлена самими авторами.
В начале каждого параграфа приводится сводка основных теоретических положений, определении и формул, а также дается подробное решение 100 примеров. В книге содержится более 300 задач и примеров для самостоятельного решения. Все они снабжены ответами или указаниями к решению.

Векторный анализ, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002
Скачать и читать Векторный анализ, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002
 
Показана страница 86 из 515