Теория функций комплексного переменного и операционное исчисление в примерах и задачах, Пантелеев А.В., Якимова А.С., 2001.
Пособие охватывает классические разделы теории функций комплексного переменного: дифференцирование, интегрирование, разложение в функциональные ряды, анализ особых точек и вычисление вычетов. Рассмотрено применение преобразования Лапласа и z-преобразования для решения линейных дифференциальных и разностных уравнений. Особое внимание уделено специфике решения задач анализа выходных процессов и устойчивости линейных одномерных и многомерных непрерывных и дискретных динамических систем, исследуемых в теории управления.
По каждому разделу кратко изложены основные теоретические сведения, приведены решения типовых примеров, даны упражнения и задачи для самостоятельной работы с ответами.
Для, студентов высших технических учебных заведений.
АНАЛИТИЧЕСКИЕ ФУНКЦИИ В ЗАДАЧАХ ТЕОРИИ ПОЛЯ.
Известные из интегрального исчисления функции многих переменных задачи векторного анализа - вычисления работы, потока векторного поля, нахождения потенциальной функции и потенциала, с физической точки зрения являются важнейшими задачами электростатики и гидродинамики, так называемыми задачами теории потенциала - исследования стационарных полей.
При исследовании плоских векторных полей в таких задачах применяются методы теории аналитических функций, так как задание функции в плоской области есть задание функции комплексного переменного.
ОГЛАВЛЕНИЕ.
Предисловие.
Введение.
Глава первая Комплексные числа.
1.1. Формы задания комплексных чисел.
1.1.1. Комплексные числа в алгебраической форме.
1.1.2. Комплексные числа в тригонометрической и показательной формах.
1.2. Множества на комплексной плоскости.
1.2.1. Основные определения.
1.2.2. Кривые на комплексной плоскости.
1.2.3. Области.
1.3. Числовые последовательности и ряды с комплексными членами.
1.3.1. Последовательности комплексных чисел.
1.3.2. Анализ сходимости рядов с комплексными членами.
Задачи для самостоятельного решения.
Глава вторая Функции комплексного переменного.
2.1. Дифференцирование функций комплексного переменного.
2.1.1. Основные определения.
2.1.2. Элементарные функции комплексного переменного.
2.1.3. Свойства дифференцируемых функций.
2.1.4. Аналитические функции.
2.1.5. Простейшие отображения.
2.2. Интегрирование функций комплексного переменного.
2.2.1. Основные определения.
2.2.2. Вычисление интегралов.
2.2.3. Основные теоремы интегрального исчисления.
2.2.4. Вычисление интегралов по замкнутому контуру от функций комплексного переменного.
Задачи для самостоятельного решения.
Глава третья Функциональные ряды в комплексной области.
3.1. Анализ сходимости функциональных последовательностей и рядов.
3.1.1. Основные определения.
3.1.2. Нахождение области сходимости рядов. Исследование рядов на равномерную сходимость.
3.1.3. Степенные ряды.
3.1.4. Ряды по целым степеням.
3.2. Разложение функций в ряды.
3.2.1. Разложение функций в степенные ряды. Ряд Тейлора.
3.2.2. Нули аналитических функций.
3.2.3. Разложение функций в ряды по целым степеням. Ряд Лорана.
Задачи для самостоятельного решения.
Глава четвертая Особые точки функций комплексного переменного. Вычеты.
4.1. Изолированные особые точки функций.
4.1.1. Классификация особых точек.
4.1.2. Ряд Лорана в окрестности особой точки.
4.1.3. Правила определения порядка полюса.
4.1.4. Определение типа особых точек для суммы, разности, произведения и частного функций.
4.2. Вычеты и их применение.
4.2.1. Определение вычета.
4.2.2. Вычисление вычетов в полюсе и устранимой особой точке.
4.2.3. Вычисление контурных интегралов с помощью вычетов.
4.2.4. Применение вычетов к вычислению интегралов от функций действительной переменной.
4.2.5. Применение вычетов к исследованию расположения нулей многочлена на комплексной плоскости.
Задачи для самостоятельного решения.
Глава пятая Операционное исчисление.
5.1. Преобразование Лапласа.
5.1.1. Основные определения.
5.1.2. Свойства преобразования Лапласа.
5.1.3. Нахождение изображения по оригиналу.
5.1.4. Нахождение оригинала по изображению.
5.2. Области применения преобразования Лапласа.
5.2.1. Решение линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами.
5.2.2. Анализ выходных процессов линейных непрерывных стационарных динамических систем.
5.2.3. Анализ устойчивости линейных непрерывных стационарных динамических систем.
5.3. Z-преобразование.
5.3.1. Основные определения.
5.3.2. Свойства Z-преобразования.
5.3.3. Нахождение изображения по оригиналу.
5.3.4. Нахождение оригинала по изображению.
5.4. Области применения Z-преобразования.
5.4.1. Решение линейных разностных уравнений с постоянными коэффициентами.
5.4.2. Анализ выходных процессов линейных дискретных стационарных динамических систем.
5.4.3. Анализ устойчивости линейных дискретных стационарных динамических систем.
Задачи для самостоятельного решения.
Ответы и указания.
Литература.
Предметный указатель.
Купить .
Теги: учебник по математике :: математика :: Пантелеев :: Якимова
Смотрите также учебники, книги и учебные материалы:
- Планирование учебного процесса по математике, Сергиенко Л.Ю., Самойленко П.И., 1987
- Математика, 6 класс, часть 3, Дорофеев Г.В., Петерсон Л.Г., 2002
- Геометрия, 8 класс, Ершова А.П., Голобородько В.В., Крижановский А.Ф., Ершов С.В., 2016
- Функциональный анализ и интегральные уравнения, Антоневич А.Б., Радыно Я.В., 1984
- Краткий курс функционального анализа, Люстерник Л.А., Соболев В.И., 1982
- Современные основы школьного курса математики, Пособие для студентов педагогических институтов, Виленкин Н.Я., Дуничев К.И., Калужнин Л.А., Столяр А.А., 1980
- Курс математического анализа, том 3, часть 2, Гурса Э., 1934
- Курс математического анализа, том 2, часть 2, Гурса Э., 1933