Ряды, Карасева Р.Б., 2016.
Содержание учебного пособия соответствует программе раздела «Ряды» дисциплины «Математика», «Математический анализ». Тематика пособия отвечает требованиям образовательного стандарта. Кроме теоретической части курса в книге есть большое число примеров с разобранными решениями, задачи для самостоятельного решения, типовой расчет.
Данное пособие окажет помощь в освоении указанного раздела высшей математики бакалаврам, специалистам, магистрам, аспирантам, будет полезно преподавателям при подготовке к лекциям и практическим занятиям.
Предназначено для студентов, обучающихся по программам строительных и технических направлений подготовки.
ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ СТЕПЕННОГО РЯДА.
Теорема 1. Если степенной ряд имеет радиус сходимости R и сумму S(x):
а0 + а1х + а2х2 + ... + аnхn + ... = S(x)
то ряд, полученный его почленным дифференцированием, имеет тот же радиус сходимости R и его сумма равна производной от функции S(x):
a1 + 2a2x + 3a3x2 + ... + nanxn-1 + ... = S'(x).
Замечание 1. Сумма степенного ряда есть дифференцируемая функция. Причем она имеет производные любого порядка, так как теорему 1 можно применять сколько угодно раз.
Замечание 2. Если исходный ряд расходился на каком-нибудь конце промежутка (-R; R), то и ряд, полученный после дифференцирования, на этом конце будет расходиться. Сходимость же в точках х = ±R после дифференцирования может сохраниться, но может и нарушиться.
Замечание 3. Сходимость ряда, полученного дифференцированием степенного ряда, несколько хуже, чем сходимость исходного ряда. Поскольку nаn по абсолютному значению больше, чем ап, то неравенство вида |Rn| < e (e > 0) для остатка Rn ряда, полученного дифференцированием, выполнится при большем значении n, чем такая же оценка для остатка исходного ряда. То есть остаток Rn ряда, полученного дифференцированием, стремится к нулю медленнее, чем остаток исходного степенного ряда. Для практики важно, чтобы это стремление было достаточно быстрым.
ОГЛАВЛЕНИЕ.
ПРЕДИСЛОВИЕ.
РАЗДЕЛ 1. РЯДЫ. ЗНАКОПОЛОЖИТЕЛЬНЫЕ РЯДЫ.
§ 1. Вводные замечания.
§ 2. Основные определения.
§ 3. Сходящиеся и расходящиеся ряды.
§ 4. Свойства сходящихся рядов.
§ 5. Признак сравнения рядов неравенством.
§ 6. Сравнение знакоположительных рядов отношением.
§ 7. Признак Даламбера.
§ 8. Радикальный признак Коши.
§ 9. Интегральный признак Коши.
РАЗДЕЛ 2. ПРОИЗВОЛЬНЫЕ РЯДЫ.
§ 1. Ряды с членами произвольного знака.
§ 2. Абсолютная и условная сходимости.
§ 3. Признак Даламбера для произвольного ряда.
§ 4. Перестановка членов ряда.
§ 5. Группировка членов ряда.
РАЗДЕЛ 3. ФУНКЦИОНАЛЬНЫЕ РЯДЫ.
§ 1. Понятие функциональных рядов.
§ 2. Степенные ряды.
§ 3. Нахождение радиуса сходимости.
§ 4. Дифференцирование и интегрирование степенного ряда.
§ 5. Ряд Тейлора.
§ 6. Разложение функций в степенные ряды.
§ 7. Приближенные вычисления с помощью рядов.
§ 8. Вычисление пределов и определенных интегралов с помощью рядов.
§ 9. Интегрирование дифференциальных уравнений с помощью рядов.
РАЗДЕЛ 4. РЯДЫ ФУРЬЕ.
§ 1. Тригонометрический ряд.
§ 2. Ряд Фурье.
§ 3. Ряд Фурье для четной и нечетной функций.
§ 4. Интеграл Фурье.
ИСТОРИЧЕСКАЯ СПРАВКА.
ТИПОВОЙ РАСЧЕТ.
ОТВЕТЫ.
Раздел 1.
Раздел 2.
Раздел 3.
Раздел 4.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК.
Купить .
Теги: учебник по математике :: математика :: Карасева
Смотрите также учебники, книги и учебные материалы:
- Числовые и функциональные ряды, Апарина Л.В., 2012
- Численные методы в примерах и задачах, Киреев В.И., Пантелеев А.В., 2015
- Теория функций комплексного переменного и операционное исчисление в примерах и задачах, Пантелеев А.В., Якимова А.С., 2015
- Специальные методы оптимизации, Колбин В.В., 2014
- Решение вариационных задач строительной механики в системе Mathematica, Кристалинский Р.Е., Шапошников Н.Н., 2010
- Решебник к сборнику задач по курсу математического анализа Бермана, 2011
- Математика, 2 класс, Моро М.И., Волкова С.И., Степанова С.В., 2016
- Математика, 1 класс, Моро М.И., Волкова С.И., Степанова С.В., 2016