Дифференциальные уравнения математической физики, Мартинсон Л.К., Малов Ю.И., 2002.
Рассмотрены различные постановки задач математической физики для дифференциальных уравнений в частных производных и основные аналитические методы их решения, проанализированы свойства полученных решений. Изложено большое число линейных и нелинейных задач, к решению которых приводит исследование математических моделей различных процессов в физике, химии, биологии, экологии и др.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им, Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Задачи математической физики.
Исторически большинство математических моделей, в основе которых лежат дифференциальные уравнения в частных производных, были разработаны для решения задач, описывающих физические процессы прежде всего в гидродинамике, аэромеханике и электродинамике. Как удачно пошутил по этому поводу Дж. Литлвуд, объектами прикладной математики являются “вода, газ и электричество”. Именно поэтому в приложениях дифференциальные уравнения в частных производных получили название уравнений математической физики.
В настоящее время с помощью таких уравнений моделируют процессы различной природы: физические, химические, биологические, экологические, экономические и др. Широкое применение методы математической физики находят и при решении инженерных задач.
Купить .
Теги: учебник по математике :: математика :: Мартинсон :: Малов
Смотрите также учебники, книги и учебные материалы:
- Математическая логика, Ершов Ю.Л., Палютин Е.А., 2011
- Веселый математик, Иванов И.И., 1933
- Основы аналитической теории чисел, Карацуба А.Л., 1983
- Математические беседы для студентов, Ленг С., 2000
- Элементы численного анализа и математической обработки результатов опыта, Гутер Р.С., Овчинский Б.В., 1970
- Математический калейдоскоп, Штейнгауз В.Г., 1981
- Математический анализ, Функции нескольких вещественных переменных, Части 1-2, Шилов Г.Е.
- Дифференциальная геометрия и топология, Фоменко А.Т., 1999