Книга состоит из трех частей.
Первая часть содержит основные методы вычислительной математики: приближенное решение уравнений и систем, простейшие задачи линейной алгебры, параболическую интерполяцию, численное интегрирование я решение дифференциальных уравнений.
Вторая часть посвящена теории вероятностей в объеме, предусмотренном общей программой втузов.
В третьей части рассматривается теория ошибок наблюдений, интерполяция по способу наименьших квадратов, а также выражение наблюденных данных уравнениями (подбор эмпирических формул).
Излагаемый материал сопровождается разбором примеров вычислений и обработки опытных данных. Книга предназначается в качестве учебного пособия для студентов втузов по вычислительной математике и теории вероятностей и может быть использована инженерами, преподавателями специальных кафедр и научными сотрудниками в области технических наук.
ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ И СИСТЕМ.
Как известно, далеко не всякое уравнение может быть решено точно. В первую очередь это относится к большинству трансцендентных уравнений, т. е. уравнений, в которых неизвестная х находится под знаком трансцендентной функции. Доказано также, что нельзя построить формулу, по которой можно было бы решать произвольное алгебраическое уравнение степени выше четвертой).
Однако точное решение уравнения не является безусловно необходимым. Задача отыскания корней уравнения может считаться практически решенной, если мы сумеем определить корни с нужной степенью точности и указать пределы возможной погрешности.
Говоря о приближенном решении уравнений, мы всюду, кроме § 5, будем иметь в виду отыскание лишь действительных корней.
Большинство употребляющихся приближенных способов решения уравнений являются, по существу, способами уточнения корней, т. е. для их применения необходимо знание примерных значений корня. Для этой последней цели могут служить графические способы, о которых и будет сейчас идти речь.
Оглавление
Из предисловия к первому изданию
Предисловие ко второму изданию
Введение
ЧАСТЬ ПЕРВАЯ ЭЛЕМЕНТЫ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ
Глава I. Численное решение уравнений и систем
§1. Общие соображения
§2. Способ хорд и способ касательных
§3. Дальнейшее рассмотрение способов хорд и касательных. Комбинированный способ
§4. Способ итераций
§5. Случай алгебраического уравнения
§6. Решение системы линейных уравнений по способу Гаусса
§7. Применение способа Гаусса для вычисления определителя и нахождения обратной матрицы
§8. Итерация для линейных систем
§9. Способ Зейделя
§10. Способ Ньютона для системы уравнений
§11. Способ итераций для нелинейных систем уравнений
Глава II. Интерполирование
§12. Понятие об интерполировании
§13. Параболическое интерполирование. Интерполяционная формула Лагранжа
§14. Интерполяционная схема Эйткина
§15. Равноотстоящие значения аргумента. Конечные разности
§16. Интерполяционные формулы Ньютона
§17. Применение интерполяционных формул для экстраполяции. Обратная интерполяция
§18. Численное дифференцирование
§19. О точности интерполяционных формул
Глава III. Приближенное интегрирование
§20. Интегрирование с помощью рядов
§21. Формулы численного интегрирования
§22. О точности формул численного интегрирования
§23. Квадратурные формулы типа Гаусса
Глава IV. Приближенное интегрирование дифференциальных уравнений
§24. Общие замечания. Интегрирование с помощью рядов
§25. Другие аналитические методы
§26. Численные методы интегрирования. Метод Эйлера
§27. Метод Адамса - Крылова
§28. Простейшие методы прогноза и коррекции. Метод Милна
§29. О точности методов численного интегрирования дифференциальных уравнений
ЧАСТЬ ВТОРАЯ ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
Глава V. События и вероятность
§30. Основные понятия. Классическое определение вероятности
§31. Сложные вероятности. Теоремы сложения и умножения. Условные вероятности
§32. Полная вероятность. Формула Бейеса
§33. Другие определения вероятности
§34. Повторение испытаний
§35. Асимптотические формулы. Локальная теорема Муавра - Лапласа
§36. Нормальная функция распределения
§37. Интегральная теорема Муавра - Лапласа. Теорема Бернулли
Глава VI. Случайные величины
§38. Случайная величина и ее закон распределения
§39. Функция распределения и плотность вероятности
§40. Основные примеры дискретных и непрерывных распределений
§41. Числовые характеристики случайных величин. Математическое ожидание и дисперсия
§42. Двумерная случайная величина. Функция распределения и плотность вероятности
§43. Числовые характеристики системы двух случайных величин
§44. Нормальное распределение двумерной случайной величины
§45. Степень неопределенности дискретного распределения. Понятие об энтропии
ЧАСТЬ ТРЕТЬЯ МАТЕМАТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ОПЫТА
Вводные замечания
Глава VII. Теория ошибок
§46. Случайные ошибки
§47. Формула Гаусса для распределения вероятностей случайных ошибок
§48. Функция ошибок. Вероятная ошибка. Средняя и средняя квадратичная ошибки
§49. Определение меры точности по результатам произведенных наблюдений
§50. О функциях величин, полученных из наблюдений
Глава VIII. Способ наименьших квадратов
§51. Общие замечания
§52. Примеры применения способа наименьших квадратов
§53. Ортогональные многочлены Чебышева
§54. Приближение функций по способу Чебышева
Глава IX. Представление наблюденных данных уравнениями. Эмпирические формулы
§55. Вводные замечания
§56. Представление наблюденных данных линейными функциями
§57. Функциональные шкалы и их применение
§58. Нахождение коэффициентов для степенных функций
§59. Подбор коэффициентов для показательных функций
Замечания о числе параметров
Приложения.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Элементы численного анализа и математической обработки результатов опыта, Гутер Р.С., Овчинский Б.В., 1970 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - djvu - Яндекс.Диск.
Дата публикации:
Теги: учебник по математике :: математика :: Гутер :: Овчинский
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Веселый математик, Иванов И.И., 1933
- Основы аналитической теории чисел, Карацуба А.Л., 1983
- Математические беседы для студентов, Ленг С., 2000
- Дифференциальные уравнения математической физики, Мартинсон Л.К., Малов Ю.И., 2002
Предыдущие статьи:
- Математический калейдоскоп, Штейнгауз В.Г., 1981
- Математический анализ, Функции нескольких вещественных переменных, Части 1-2, Шилов Г.Е.
- Дифференциальная геометрия и топология, Фоменко А.Т., 1999
- Устный счёт, 3 класс, Мавлютова Н.Р., 2009