Тензорное исчисление, Акивис М.А., Гольдберг В.В., 1969.
Излагаются основы тензорного исчисления и некоторые его приложения к геометрии, механике и физике. В качестве приложений строится общая теория поверхностей второго порядка, изучаются тензоры инерции, напряжений, деформаций и рассматриваются некоторые вопросы кристаллофизики. Последняя глава знакомит с элементами тензорного анализа.
Понятие линейного пространства.
В курсе аналитической геометрии читатель уже встречался с понятием свободного вектора — направленного отрезка, который можно переносить в пространстве параллельно его первоначальному положению. Обычно такие векторы обозначают жирными буквами латинского алфавита: а,b ..., х, у, ... Для простоты можно считать, что все эти векторы имеют общую начальную точку, которую мы обозначим буквой О и назовем началом координат.
В аналитической геометрии для векторов были определены две операции: а) сложение векторов х и у, обозначаемое х+y) умножение вектора х на действительное число л, обозначаемое x. Совокупность всех векторов пространства является замкнутой относительно этих двух операций в том смысле, что при умножении вектора на число снова получается некоторый вектор и при сложении двух векторов — некоторый третий вектор из этой же совокупности.
ОГЛАВЛЕНИЕ.
Предисловие.
Глава I. Линейное пространство.
§1. Понятие линейного пространства.
§2. Линейная зависимость векторов.
§3. Размерность и базис линейного пространства.
§4. Прямоугольный базис в трехмерном пространстве. Скалярное произведение векторов.
§5. Векторное и смешанное произведения векторов.
§6. Преобразования ортонормированного базиса. Основная задача тензорного исчисления.
§7. Некоторые вопросы аналитической геометрии в пространстве.
Глава II. Полилинейные формы н тензоры.
§1. Линейные формы.
§2. Билинейные формы.
§3. Полилинейные формы. Общее определение тензора.
§4. Алгебраические операции над тензорами.
§5. Симметричные и антисимметричные тензоры.
Глава III. Линейные преобразования векторного пространства н тензоры второй валентности.
§1. Линейные преобразования.
§2. Матрица линейного преобразования.
§3. Определитель матрицы линейного преобразования. Ранг матрицы.
§4. Линейные преобразования и билинейные формы.
§5. Умножение линейных преобразований и умножение матриц.
§6. Обратное линейное преобразование и обратная матрица.
§7. Группа линейных преобразований и ее подгруппы.
Глава IV. Приведение к простейшему виду матрицы линейного преобразования.
§1. Собственные векторы и собственные значения линейного преобразования.
§2. Приведение к простейшему виду матрицы линейного преобразования в случае различных собственных значений.
§3. Многочлены от матриц и теорема Гамильтона — Кэли.
§4. Свойства собственных векторов и собственных значений симметричного линейного преобразования.
§5. Приведение к диагональному виду матрицы симметричного линейного преобразования.
§6. Приведение квадратичной формы к каноническому виду.
§7. Представление невырожденного линейного преобразования в виде произведения симметричного и ортогонального преобразований.
Глава V. Общая теория поверхностей второго порядка.
§1. Общее уравнение поверхности второго порядка. Его инварианты.
§2. Приведение к простейшему виду общего уравнения поверхности второго порядка.
§3. Определение типа поверхности второго порядка при помощи инвариантов.
§4. Классификация поверхностей второго порядка.
§5. Приложение теории инвариантов к классификации поверхностей второго порядка.
§6. Центральные и нецентральные поверхности второго порядка.
§7. Примеры.
Глава VI. Приложение тензорного исчисления к некоторым вопросам механики и физики.
§1. Тензор инерции.
§2. Некоторые свойства кристаллов, связанные с тензорами второй валентности.
§3. Тензоры напряжений и деформации.
§4. Дальнейшие свойства кристаллов.
Глава VII. Основы тензорного анализа.
§1. Тензорное поле и его дифференцирование.
§2. Механика деформируемой среды.
§3. Ортогональные криволинейные системы координат.
§4. Подвижной репер ортогональной криволинейной системы координат и тензорные поля.
§5. Дифференцирование тензорного поля в криволинейных координатах.
Ответы и указания к решению задач и упражнений.
Литература.
Предметный указатель.
Купить .
Теги: учебник по математике :: математика :: Акивис :: Гольдберг
Смотрите также учебники, книги и учебные материалы:
- Обыкновенные дифференциальные уравнении, Федорюк М.В., 1985
- Функции комплексного переменного, Операционное исчисление, Теория устойчивости, Краснов М.Л., Киселев А.И., Макаренко Г.И., 1981
- Обыкновенные дифференциальные уравнения, Федорюк М.В., 1980
- Интегральные уравнения, Краснов М.Л., 1975
- Вероятностная теория чисел, Постников А.Г., 1974
- Рабочая программа к учебникам Гейдмана Б.П., Мишариной И.Э., Зверевой Е.А. «Математика», 1-4 классы, 2012
- Статистические методы для исследователей, Фишер Р.А., 1954
- Теория вероятностей, Хуснутдинов Р.Ш., 2013