Комбинаторная геометрия — молодая ветвь математики, оформившаяся в самостоятельное -направление лишь в XX столетия. Ее зарождение связано с работами Хедив, Барсука, Хадвигера, Юга, Грюнбаума, Секефальви-Наяя и других математиков. Данная монография — первое большое исследование советских ученых по комбинаторной геометрии. Она отличается от существующих книг по комбинаторной геометрии большим числом новых постановок задач и полученных результатов. Использование различных пониманий выпуклости позволяет по-иному осмыслить классические теоремы комбинаторной геометрии, дает ряд новых результатов и формулировок проблем. Книга предназначена для научных работников в области геометрии, преподавателей университетов и пединститутов, аспирантов, а также может быть полезной для студентов-математиков при выборе тем курсовых и дипломных работ и как материал для спецкурсов и семинаров.
Комбинаторная геометрия — дитя XX века. Ее основные результаты, проблематика, методы появились именно в нашем столетии. Круг задач, относящихся к современной комбинаторной геометрии, весьма широк. Однако можно указать некоторую общую схему, в рамки которой укладывается значительная часть задач комбинаторной геометрии. Именно, рассматривается некоторое множество М и определенным образом связанное с ним семейство множеств Q(M).
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Комбинаторная геометрия различных классов выпуклых множеств, Болтянский В.Г., Солтан П.С., 1978 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - djvu - Яндекс.Диск.
Дата публикации:
Теги: книги по геометрии :: математика :: геометрия :: множества :: комбинаторная геометрия :: Болтянский :: Солтан
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Мир математики, том 21, Замечательные числа, Ноль, 666 и другие бестии, Гарсия дель Сид Л., 2014
- Мир математики, том 20, Творчество в математике, По каким правилам ведутся игры разума, Альберти М., 2014
- Геометрия, Метод аналогии, учебное пособие для СПО, Далингер В.А., 2019
- Геометрия, учебное пособие для СПО, Богомолов Н.В., 2019
Предыдущие статьи:
- Планиметрия, Пособие для углубленного изучения математики, Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Шестаков С.А., Юдина И.И., 2005
- Геометрия, Планиметрия, Стерометрия, Киселев А.П., Глаголев Н.А., 2013
- Геометрия, Киселев А.П., Глаголев Н.А., 2004
- Алгебра, Многочлены, учебное пособие, Ларин С.В., 2019