Математика, 6 класс, учебник для учащихся общеобразовательных организаций, Мерзляк А.Г., Полонский В.Б., Якир М.С., 2014.
Учебник предназначен для изучения математики в 6 классе общеобразовательных организаций. В нём предусмотрена уровневая дифференциация, позволяющая формировать у школьников познавательный интерес к математике.
Учебник входит в систему Алгоритм успеха.
Содержание учебника соответствует федеральному государственному образовательному стандарту основного общего образования (2010 г.).
Делители и кратные.
Остаток при делении числа 30 на 5 равен 0, гак как 30 = 5 • 6. В этом случае говорят, что число 30 делится нацело на 5. Число 5 называют делителем числа 30, а число 30 — кратным числа 5.
Ш Натуральное число а делится нацело на натуральное число b если найдётся натуральное число с такое, что справедливо равенство a = b • с.
Если натуральное число а делится нацело на натуральное число b, то число а называют кратным числа bf а число h — делителем числа а.
Числа 1, 2, 3, 6, 10, 15, 30 также являются делителями числа 30, а число 30 является кратным каждого из этих чисел.
Заметим, что число 30 не делится нацело, например, на число 7. Поэтом)' число 7 не является делителем числа 30, а число 30 не кратно числу 7.
Как лучше говорить: «Число а делится нацело на число b», «Число b является делителем числа а», «Число а кратно числу b», «Число а является кратным числа 6»? Все равно, любой выбор будет верным.
Легко записать все делители числа 6. Это числа 1, 2, 3 и 6. А можно ли перечислить все кратные числа б? Числа 6 • 1, 6 • 2, 6 x 3, 6 • 4, 6 • 5 и т. д. кратны числу 6. Получается, что чисел, кратных числу 6, бесконечно много. Поэтому всех их перечислить нельзя.
Признаки делимости на 9 и на 3.
Выполнив деление, можно убедиться, что каждое из чисел 108, 4 869, 98 802 делится нацело на 9. А существует ли другой, более быстрый способ убедиться в этом?
Иными словами, существует ли признак делимости на 9? Да, он есть.
Отметим, что сумма цифр каждого из этих трех чисел кратна 9. Л вот, например, ни сами числа 124, 53.4, 7 253, ни суммы их цифр, соответственно равные 7, 11, 17, не кратны 9. И это не случайно.
Если сумма цифр числа делится нацело на 9, то и само число делится нацело на 9.
Если сумма цифр числа не делится нацело на 9. то и само число не делится нацело на 9.
Оглавление
От авторов.
Глава 1. Делимость натуральных чисел
§ 1. Делители и кратные.
§ 2. Признаки делимости на 10. на 5 и на 2.
§ 3. Признаки делимости на 9 и на 3. Делится или не делится ?.
§ 4. Простые и составные числа. Так ли просты эти простые числа?.
§ 5. Наибольший общий делитель.
§ 6. Наименьшее общее кратное.
Итоги главы 1.
Глава 2. Обыкновенные дроби
§ 7. Основное свойство дроби.
§ 8. Сокращение дробей.
§ 9. Приведение дробей к общему знаменателю.
Сравнение дробей.
§ 10. Сложение и вычитание дробей с разными знаменателями
§ 11. Умножение дробей.
§ 12. Нахождение дроби от числа.
§ 13. Взаимно обратные числа.
§ 14. Деление дробей.
§ 15. Нахождение числа но заданному значению его дроби.
§ 16. Преобразование обыкновенной дроби в десятичную.
§ 17. Бесконечные периодические десятичные дроби.
§ 18. Десятичное приближение обыкновенной дроби.
Итоги главы 2.
Глава 3. Отношения и пропорции
§ 19. Отношения.
§ 20. Пропорции.
§ 21. Процентное отношение двух чисел. Как найти золотую середину.
§ 22. Прямая и обратная пропорциональные зависимости.
§ 23. Деление числа в данном отношении.
§ 24. Окружность и круг.
§ 25. Длина окружности. Площадь крута.
§ 26. Цилиндр, конус, шар.
§ 27. Диаграммы.
§ 28. Случайные события. Вероятность случайного события. Итоги главы 3.
Глава 4. Рациональные числа и действия над ними
§ 29. Положительные и отрицательные числа.
§ 30. Координатная прямая.
§ 81. Целые числа. Рациональные числа. Неразумные числа.
§ 32. Модуль числя.
§ 33. Сравнение чисел.
§ 34. Сложение рациональных чисел.
§ 35. Свойства сложения рациональных чисел.
§ 36. Вычитание рациональных чисел.
§ 37. Умножение рациональных чисел. Ничто и ещё меньше.
§ 38. Переместительное и сочетательное свойства умножения рациональных чисел. Коэффициент.
§ 39. Распределительное свойство умножения.
§ 40. Деление рациональных чисел.
§ 41. Решение уравнений.
§ 42. Решение задач с помощью уравнений.
§ 43. Перпендикулярные прямые.
§ 44. Осевая и центральная симметрии.
§ 45. Параллельные прямые.
§ 46. Координатная плоскость.
§ 47. Графики.
Итоги главы 4.
Ответы и указания к упражнениям.
Алфавитно-предметный указатель.
Учителю.
Купить книгу Математика, 6 класс, учебник для учащихся общеобразовательных организаций, Мерзляк А.Г., Полонский В.Б., Якир М.С., 2014
Теги: Мерзляк :: Полонский :: Якир :: математика :: 2014
Смотрите также учебники, книги и учебные материалы:
- Высшая математика для технических университетов, Аналитическая геометрия, Часть II, Задорожный В.Н., Зальмеж В.Ф., Трифонов А.Ю., Шаповалов А.В., 2010
- Геометрия, учебное пособие для 11 класса, Шлыков В.В., 2008
- Основы начертательной геометрии, краткий курс и сборник задач, учебное пособие, Буланже Г.В., Гушин И.А., Гончарова В.А., 2015
- Математическая логика, курс лекций, Тимофеева И.Л., 2007
- Математика, алгебра и начала математического анализа, геометрия, 10-11 классы, учебник для общеобразовательных организаций, базовый и углубленный уровни, Александров А.Д., Вернер А.Л., Рыжик В.И., 2014
- Математика, алгебра и начала математического анализа, геометрия, алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций, углублённый уровень, Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
- Математика, алгебра и начала математического анализа, геометрия, алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций, углублённый уровень, Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
- Метод интегральных преобразований в уравнениях с частными производными, Иванов А.О., Булычева С.В., 2004