За страницами учебника математики, Математический анализ, Теория вероятностей, Старинные и занимательные задачи, 10-11 классы, Шибасов Л.П., Шибасова З.Ф., 1997.
Книга является продолжением вышедшей в 1996 г. книги с тем же названием (авт. Виленкин Н. Я., Шибасов Л. П., Шибасова 3. Ф.) и адресована учащимся старших классов, желающим расширить и углубить знания по математике. Книга погружает учащихся в мир современной математики, рассказывает о задачах и проблемах, сыгравших важную роль в становлении и развитии математического анализа и теории вероятностей. Старинные и занимательные задачи сопровождаются историческими сведениями.
Что такое «парабола».
Сейчас любой школьник на вопрос: «Чему равна площадь параллелограмма?» — ответит: «Произведению основания на высоту». И едва ли кому придет в голову ответить, что площадь параллелограмма в два раза больше площади треугольника с теми же основанием и высотой. А ведь именно в таком виде формулировали теоремы о площадях древнегреческие математики. Они не приводили конкретного значения площади фигуры, а указывали ее отношение к площади другой, как правило, более простой фигуры.
В «Началах» Евклида мы читаем: «Если параллелограмм имеет с треугольником одно и то же основание и находится между теми же параллельными, то параллелограмм будет вдвое большим треугольника». Аналогично формулировались утверждения и об объемах тел. В трактате «О шаре и цилиндре» Архимед доказывает теорему: «Всякий шар будет в четыре раза больше конуса с основанием, равным большему кругу шара, и с высотой, равной радиусу шара».
ОГЛАВЛЕНИЕ.
Математический анализ.
Глава I. Истоки интегрального исчисления.
1. Что такое парабола.
2. Равносоставленность.
3. Метод исчерпывания.
4. «Эврика!».
5. Как рассуждал Архимед.
6. Много долгих веков.
7. В упрощении — универсальность.
8. Неделимые Кавальери.
9. Интегральные суммы.
Глава II. Появление дифференциального исчисления.
1. Поиск кратчайшего пути.
2. Первые шаги.
3. Обратимся к механике.
4. Как провести касательную.
5. Основная теорема анализа.
6. Украшение человеческого рода.
7. Создатель вещих книг.
Глава III. Дальнейшее развитие анализа.
1. Обратные задачи на касательные.
2. Цепная линия.
3. Трактриса.
4. Кривая наибыстрейшего спуска.
5. Знакомая кривая.
6. Развертки.
7. Задача Дидоны.
8. Мыльные пленки.
9. Бесконечно малые.
10. Предел.
11. Сколько точек в отрезке?.
12. Неожиданный поворот.
Глава IV. Функции и ряды.
1. Тетива — залив — синус.
2. Логарифмы.
3. Бесконечно много слагаемых.
4. Парадокс сдвинутых кирпичей.
5. Степенные ряды у Ньютона.
6. Бесконечная квадратура.
7. Аналогия и интуиция.
8. Что называть функцией.
9. Чудо анализа.
10. Проблемы существования.
Упражнения.
Теория вероятностей.
1. Все началось с игр.
2. Справедливый раздел ставки.
3. Разорение игрока.
4. Счастливый билет.
5. Генуэзская лотерея.
6. Геометрическая вероятность.
7. Закон больших чисел.
8. Вместо заключения.
Упражнения.
Старинные и занимательные задачи.
1. Златая строка.
2. Фальшивое правило.
3. Алгоритм выигрыша.
4. Игра «цзяньшицзы».
5. Задача Эйлера.
6. Граф решает задачу.
7. Ходом шахматного коня.
8. Магические квадраты.
9. Задача о 36 офицерах.
Упражнения.
Ответы и решения.
Литература.
Именной указатель.
Предметный указатель.
Купить .
Теги: учебник по математике :: математика :: Шибасов :: Шибасова :: 10 класс :: 11 класс
Смотрите также учебники, книги и учебные материалы:
- Основы математической статистики в алгоритмах, Миронова Л.И., Фомин Н.И., Вилисова А.Д., 2023
- Лекции и практические занятия по математике, Учебное пособие, Лугавов В.С., Лугавова В.Д., Лугавова Л.В., 2023
- Теория мартингалов, Липцер Р.Ш., Ширяев А.Н., 1986
- Теория параметров, Практическое руководство, Лемешев В.П., 2017
- Системы с переменным запаздыванием, Солодов А.В., Солодова Е.А., 1980
- Дифференциальная геометрия и тензорный анализ в задачах, Козлов И.К., Федосеев Д.А., 2022
- Ряды, Пособие для студентов дневной формы обучения, Корсун Л.Д., Курлович С.П., Тепляков В.Г., 2010
- Математические модели вязкоупругих сред, Конспект лекций, Кирюшин В.В., 2022