За страницами учебника математики, Математический анализ, Теория вероятностей, 10-11 классы, Шибасов Л.П., Шибасова З.Ф., 2008.
Книга является продолжением книг «За страницами учебника математики. Арифметика. Алгебра» и «За страницами учебника математики. Геометрия. Старинные и занимательные задачи» и адресована учащимся старших классов, желающим расширить и углубить знания по всем разделам математики. Изложение новых математических понятий опирается на школьный курс и сопровождается интересными историческими фактами. Книга погружает учащихся в мир современной математики, рассказывает о роли ученых-математиков в развитии мировой науки. Теоретические сведения дополнены разнообразными задачами.
ИСТОКИ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ.
Математический анализ — область математики, изучающая функции. А поскольку все явления окружающего нас мира так или иначе связаны между собой и эти связи можно описать при помощи функций, то математический анализ чрезвычайно полезен и часто незаменим во многих областях человеческой деятельности. Средствами анализа решаются самые разнообразные задачи не только в математике, но и в физике, химии, биологии, технике, строительстве и т. д. «Нельзя объять необъятное», — сказал Козьма Прутков. Тем не менее анализ с помощью функций смог это сделать.
Для исследования функций анализ обладает мощным аппаратом — интегральным и дифференциальным исчислениями. В этой главе мы будем говорить об интегральном исчислении. Появилось оно сравнительно недавно — в XVII в. Но истоки его обнаруживаются уже в глубокой древности.
ОГЛАВЛЕНИЕ.
МАТЕМАТИЧЕСКИЙ АНАЛИЗ.
Глава I. Истоки интегрального исчисления.
1. Что такое «парабола».
2. Равносоставленность.
3. Метод исчерпывания.
4. «Эврика!».
5. Как рассуждал Архимед.
6. Много долгих веков.
7. В упрощении — универсальность.
8. Неделимые Кавальери.
9. Интегральные суммы.
Глава II. Появление дифференциального исчисления.
1. Поиск кратчайшего пути.
2. Первые шаги.
3. Обратимся к механике.
4. Как провести касательную.
5. Основная теорема анализа.
6. Украшение человеческого рода.
7. Создатель вещих книг.
Глава III. Дальнейшее развитие анализа.
1. Обратные задачи на касательные.
2. Цепная линия.
3. Трактриса.
4. Кривая наибыстрейшего спуска.
5. Знакомая кривая.
6. Развертки.
7. Задача Дидоны.
8. Мыльные пленки.
9. Бесконечно малые.
10. Предел.
11. Сколько точек в отрезке?.
12. Неожиданный поворот.
Глава IV. Функции и ряды.
1. Тетива — залив — синус.
2. Логарифмы.
3. Бесконечно много слагаемых.
4. Парадокс сдвинутых кирпичей.
5. Степенные ряды у Ньютона.
6. Бесконечная квадратура.
7. Аналогия и интуиция.
8. Что называть функцией.
9. Чудо анализа.
10. Проблемы существования.
Упражнения.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ.
1. Все началось с игр.
2. Справедливый раздел ставки.
3. Разорение игрока.
4. Математическое ожидание.
5. Счастливый билет.
6. Генуэзская лотерея.
7. Геометрическая вероятность.
8. Закон больших чисел.
9. Вместо заключения.
Упражнения.
Ответы и решения.
Литература.
Именной указатель.
Предметный указатель.
Купить .
Теги: учебник по математике :: математика :: Шибасов :: Шибасова :: 10 класс :: 11 класс
Смотрите также учебники, книги и учебные материалы:
- Основы математической статистики в алгоритмах, Миронова Л.И., Фомин Н.И., Вилисова А.Д., 2023
- Лекции и практические занятия по математике, Учебное пособие, Лугавов В.С., Лугавова В.Д., Лугавова Л.В., 2023
- Теория мартингалов, Липцер Р.Ш., Ширяев А.Н., 1986
- Теория параметров, Практическое руководство, Лемешев В.П., 2017
- Системы с переменным запаздыванием, Солодов А.В., Солодова Е.А., 1980
- Дифференциальная геометрия и тензорный анализ в задачах, Козлов И.К., Федосеев Д.А., 2022
- Ряды, Пособие для студентов дневной формы обучения, Корсун Л.Д., Курлович С.П., Тепляков В.Г., 2010
- Математические модели вязкоупругих сред, Конспект лекций, Кирюшин В.В., 2022