Высшая математика, Шипачев В.С., 1998.
В учебнике излагаются элементы теории множеств и вещественных чисел, числовые последовательности и теория пределов, аналитическая геометрия на плоскости и в пространстве, основы дифференциального и интегрального исчислений функций одной и нескольких переменных, элементы высшей алгебры, теория рядов и обыкновенные дифференциальные уравнения. Теоретический материал иллюстрируется большим количеством примеров.
Для студентов высших учебных заведений.
Преобразование прямоугольных координат.
При решении многих задач аналитической геометрии наряду с данной прямоугольной системой координат приходится вводить и другие прямоугольные системы координат. При этом, естественно, изменяются как координаты точек, так и уравнения кривых. Возникает задача: как, зная координаты точки в одной системе координат, найти координаты этой же точки в другой системе координат. Решить эту задачу позволяют формулы преобразования координат.
Рассмотрим два вида преобразований прямоугольных координат:
1) параллельный сдвиг осей, когда изменяется положение начала координат, а направления осей остаются прежними;
2) поворот осей координат, когда обе оси поворачиваются в одну сторону на один и тот же угол, а начало координат не изменяется.
ОГЛАВЛЕНИЕ.
Предисловие.
Введение.
Часть первая. Математический анализ функций одной переменной.
Глава 1. Вещественные числа.
Глава 2. Предел последовательности.
Глава 3. Аналитическая геометрия на плоскости.
Глава 4. Функции одной переменной.
Глава 5. Дифференцирование.
Глава 6. Применение дифференциального исчисления к исследованию функций.
Глава 7. Неопределенный интеграл.
Глава 8. Определенный интеграл.
Часть вторая. Математический анализ функций нескольких нерешенных.
Глава 9. Аналитическая геометрия в пространстве.
Глава 10. Элементы высшей алгебры.
Глава 11. Предел и непрерывность функций нескольких переменных.
Глава 12. Частные производные и дифференцируемость функций нескольких переменных.
Глава 13. Интегрирование.
Часть третья. Ряды, дифференциальные уравнения.
Глава 14. Ряды.
Глава 15. Обыкновенные дифференциальные уравнения.
Предметный указатель.
Указатель основных обозначений.
Основные формулы.
Купить .
Теги: учебник по высшей математике :: высшая математика :: Шипачев
Смотрите также учебники, книги и учебные материалы:
- Справочные материалы по математике
- Курс математики для студентов-физиков, том 1, Главы 1-11, Бамберг П., Стернберг Ш., 2006
- Курс высшей математики, том 2, Зубков В.Г., Ляховский В.А., Мартыненко А.И., Миносцев В.Б., 2005
- Конспект лекций по высшей математике, 2 часть, Письменный Д.Т., 2000
- Курс высшей алгебры, Курош А.Г., 1968
- Курс аналитической геометрии и линейной алгебры, Александров П.С., 1979
- Введение в общую теорию множеств и функций, Александров П.С., 1948
- Геометрия, 9-10 классы, Александров А.Д., Вернер A.Л., Рыжик В.И., 1984