Кольца формальных матриц и модули над ними, Крылов П.А., Туганбаев А.А., 2018.
Данная книга является первой, где систематически изучаются формальные матрицы. Элементы этих матриц принадлежат нескольким (в общем случае разным) кольцам и бимодулям. Частным случаем формальных матриц второго порядка являются контексты Мо-риты, поначалу предназначавшиеся для описания эквивалентностей между категориями модулей. Они также очень удобны для переноса свойств с одного кольца на другое. Существуют аналоги контекстов Мориты для полуколец, хопфовых и квазихопфовых алгебр, коколец и категорий. Формальные матрицы весьма полезны для построения колец с односторонними несимметричными свойствами. Подробно исследуются инъективные, плоские, проективные и наследственные модули над кольцами формальных матриц. Вводится и изучается понятие определителя формальной матрицы над коммутативным кольцом. Его свойства могут отличаться в некоторых случаях от свойств обычного определителя. Также группы Гротендика и Уайтхеда кольца формальных матриц выражаются через соответствующие группы колец с главной диагонали.
Модули над кольцами формальных матриц.
После изложения основ теории модулей над кольцами формальных матриц рассматривается строение некоторых подмодулей (малые и существенные подмодули, цоколь и радикал). Много внимания уделяется инъективным, плоским и проективным модулям над кольцами формальных матриц порядка 2.
В качестве приложения находится максимальное кольцо частных кольца формальных матриц порядка 2 и приводятся примеры абелевых групп, у которых кольца эндоморфизмов наследственны.
Также устанавливаются эквивалентности между категорией модулей над кольцом формальных матриц порядка 2 и категориями модулей над исходными кольцами.
ОГЛАВЛЕНИЕ.
Предисловие.
Список обозначений.
Глава 1. Кольца формальных матриц.
§1. Построение колец формальных матриц порядка 2.
§2. Примеры колец формальных матриц порядка 2.
§3. Кольца формальных матриц порядка n > 2.
§4. Некоторые идеалы колец формальных матриц.
§5. Кольцевые свойства.
§6. Аддитивные задачи.
Глава 2. Модули над кольцами формальных матриц.
§7. Первоначальные свойства модулей над кольцами формальных матриц.
§8. Малые и существенные подмодули.
§9. Цоколь и радикал.
§10. Инъективные модули и инъективные оболочки.
§11. Максимальное кольцо частных.
§12. Плоские модули.
§13. Проективные и наследственные модули и кольца.
§14. Эквивалентности между категориями R-mod, S-mod и K-mod.
§15. Наследственные кольца эндоморфизмов абелевых групп.
Глава 3. Кольца формальных матриц над данным кольцом.
§16. Кольца формальных матриц над кольцом R.
§17. Некоторые свойства колец формальных матриц над R.
§18. Характеризация матриц множителей.
§19. Классификация колец формальных матриц.
§20. Проблема изоморфизма.
§21. Определители формальных матриц.
§22. Некоторые теоремы о формальных матрицах.
Глава 4. Группы Гротендика и Уайтхеда колец формальных матриц.
§23. Эквивалентность двух категорий проективных модулей.
§24. Группа К0(А, В).
§25. Группа К0 кольца формальных матриц.
§26. Группа К1 кольца формальных матриц.
§27. Группы К0 и К1 колец матриц порядка n > 2.
Литература.
Предметный указатель.
Купить .
Купить .
Теги: учебник по математике :: математика :: Крылов :: Туганбаев
Смотрите также учебники, книги и учебные материалы:
- Случайный Бог или божественная случайность, математика неопределенности, Стюарт И., Шихова Н.А., 2021
- Математические вопросы гидродинамики вязкоупругих сред, Звягин В.Г., Турбин М.В., 2012
- Занимательная арифметика, Загадки и диковинки в мире чисел, Перельман Я.И., 2003
- Основы численных методов, Миньков С.Л., Миньков Л.Л., 2006
- Алгебра для школьников и абитуриентов, Веселаго И.А., 2007
- Элементарная геометрия, том 1, Понарин Я.П., 2004
- Управляемость и симметрии инвариантных систем на группах Ли и однородных пространствах, Сачков Ю.Л., 2007
- Математические основы искусственного интеллекта, Махортов С.Д., 2009