Математика, Столяр А.А., Лельчук М.П., 1975

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Математика, Столяр А.А., Лельчук М.П., 1975.

 Составлено в соответствии с программой курса «Математика». Содержит изложение теоретического материала и упражнения по первым четырем разделам программы. Простейшие теоретико-множественные и логические понятия иллюстрируются примерами, доступными учащимся начальных классов.
Предназначено для студентов I курса факультетов подготовки учителей начальных классов педагогических вузов.

Математика, Столяр А.А., Лельчук М.П., 1975


Множество.
Одним из основных понятий современной математики является понятие множества. Оно обычно принимается за первоначальное и поэтому не определяется через другие.
Когда мы говорим, что под множеством предметов понимаем «совокупность, собрание или класс каких-нибудь различимых предметов, безразлично, какой природы», мы указываем лишь синонимы («совокупность», «собрание», «класс») для слова «множество» с целью достижения интуитивной ясности смысла, в котором оно применяется. Этот смысл поясняется и многочисленными примерами. Так, можно говорить о множестве всех студентов первого курса, о множестве всех жителей города Минска (о населении города Минска), о множестве молекул данного тела, о множестве овец (отаре) колхозной фермы, о множестве всех целых чисел, о множестве точек плоскости, отстоящих от данной точки 0 на расстоянии 1 (окружности с центром 0 и радиусом 1), о множестве рациональных корней данного уравнения и т. д.
Когда в математике говорят о множестве объектов (чисел, точек, функций и т. д.), то понимают под этим одно целое — совокупность этих объектов. Основатель теории множеств немецкий математик Георг Кантор (1845—1918) выразил эту мысль следующим образом: «Множество есть многое, мыслимое как единое, целое».

СОДЕРЖАНИЕ.
ГЛАВА 1. ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ КОМБИНАТОРИКИ.
§ 1.1. Множество.
§ 1.2. Отношения между множествами.
§ 1.3. Операции над множествами.
§ 1.4. Разбиение множества на классы.
§ 1.5. Декартово произведение множеств.
§ 1.6. Бинарные отношения.
§ 1.7. Отображения.
§ 1.8 Общие правила комбинаторики.
§ 1.9. Сочетания и треугольник Паскаля.
§ 1.10. Размещения.
§ 1.11. Перестановки.
ГЛАВА 2. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ И НЕКОТОРЫЕ АЛГЕБРАИЧЕСКИЕ ПОНЯТИЯ.
§ 2 1. Высказывания и высказывательные формы.
§ 22 Логические операции.
§ 2.3. Формулы и функции логики высказываний.
§ 2.4. Законы логики высказываний.
§ 2.5. Алгебра высказываний и алгебра множеств.
§ 2 6. Предикаты.
§ 2.7. Строение и виды теорем.
§ 2.8. Необходимые и достаточные условия.
§ 2.9. Алгебраические операции.
§ 2.10. Группа.
§ 2.11. Кольца и поля.
§ 2.12. Язык числовой алгебры.
ГЛАВА 3 НЕОТРИЦАТЕЛЬНЫЕ ЦЕЛЫЕ ЧИСЛА.
§ 3.1. Понятие об аксиоматическом методе в математике.
§ 3.2. Аксиоматическое построение арифметики неотрицательных целых чисел.
§ 3.3. Понятие о количественной теории натуральных чисел.
§ 3.4. Вычитание неотрицательных целых чисел.
§ 3.5. Деление неотрицательного целого числа на натуральное число.
§ 3.6. Системы счисления и их использование в ЭВМ.
ГЛАВА 4.ДЕЛИМОСТЬ ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ.
§ 4.1. Отношение делимости, свойства делимости.
§ 4.2. Признаки делимости.
§ 4.3. Вывод признаков делимости на 2, 3, 4, 5, 8, 9, 25, 11.
§ 4.4. Простые и составные числа.
§ 4 5. Наименьшее общее кратное и наибольший общий делитель.
§ 4.6. Признаки делимости на составные числа.
§ 4.7. Делимость на простое число и основная теорема арифметики.
§ 4.8. Нахождение НОД и НОК способом разложения на простые множители.
§ 4.9. Некоторые свойства НОД и НОК.
§ 4.10. Алгоритм Евклида и его применение.
Упражнения.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математика, Столяр А.А., Лельчук М.П., 1975 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать файл № 1 - pdf
Скачать файл № 2 - djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - djvu - Яндекс.Диск.

Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-27 12:48:53