Название: Курс дифференциальных уравнений и вариационного исчисления. 2001.
Автор: Романко В.К.
В книге излагаются основные разделы классической теории обыкновенных дифференциальных уравнений и вариационного исчисления. Рассматриваются методы получения точных решений линейных дифференциальных уравнений с постоянными коэффициентами; значительное внимание уделяется вопросам существования, единственности и непрерывной зависимости решения дифференциального уравнения от исходных данных. Приводятся методы решения линейных дифференциальных уравнений с переменными коэффициентами, линейных и нелинейных уравнений первого порядка в частных производных; обсуждаются вопросы качественного исследования этих решений. Основы вариационного исчисления рассматриваются по причине тесной связи данного раздела высшей математики с теорией дифференциальных уравнений. Книга предназначена для студентов высших учебных заведений.
Данная книга имеет целью, с одной стороны, дать читателю минимум
знаний по классической теории обыкновенных дифференциальных уравнений и классическому вариационному исчислению, необходимых для их успешного применения в различных практических приложениях, а с другой стороны, подвести читателя к пониманию задач и методов их решения современной теории дифференциальных уравнений и вариационного исчисления.
Книга написана на основе курса лекций, который автор читал в Московском физико-техническом институте (МФТИ) на протяжении многих лет. Книга отражает не только личную точку зрения автора, но в определенной степени и коллективный опыт преподавания теории дифференциальных уравнений и вариационного исчисления на кафедре высшей математики МФТИ. Этот опыт основан на базе повышенных курсов математического анализа и линейной алгебры, читаемых в МФТИ.
ОГЛАВЛЕНИЕ
Предисловие 6
Некоторые обозначения 7
Введение 8
1 Методы решения некоторых дифференциальных уравнений 12
§ 1. Основные понятия для дифференциальных уравнений первого порядка 12
§ 2. Методы решения простейших дифференциальных уравнений первого порядка 18
§ 3. Уравнения первого порядка, не разрешенные относительно производной. Метод введения параметра и задача Коши 34
§ 4. Дифференциальные уравнения высшего порядка. Общие понятия и методы решения 41
2 Линейные дифференциальные уравнения порядка n с постоянными коэффициентами 52
§ 1. Дифференциальные многочлены и общий метод решения линейных уравнений с постоянными коэффициентами 52
§ 2. Линейные однородные уравнения порядка п с постоянными коэффициентами 57
§ 3. Линейные неоднородные уравнения порядка п с постоянными коэффициентами 65
3 Методы решения систем линейных дифференциальных уравнений с постоянными коэффициентами 73
§ 1. Нормальные линейные системы с постоянными коэффициентами. Общие понятия и метод исключения 73
§ 2. Общее решение нормальной линейной однородной системы с постоянными коэффициентами 76
§ 3. Общее решение нормальной линейной неоднородной системы с постоянными коэффициентами 88
§ 4. Решение нормальных линейных систем с постоянными коэффициентами с помощью матричной экспоненты 94
§ 5. Преобразование Лапласа и его применение для решения дифференциальных уравнений 103
§ 6. Методы решения произвольных линейных систем с постоянными коэффициентами 108
4 Исследование задачи Коши 113
§ 1. Вспомогательные предложения 113
§ 2. Существование и единственность решения задачи Коши для нормальной системы дифференциальных уравнений 117
§ 3. Непродолжимое решение задачи Коши 127
§ 4. Общее решение дифференциального уравнения 132
§ 5. Зависимость решения задачи Коши от параметров и начальных данных. Корректность задачи Коши 135
§ 6. Разрешимость задачи Коши для дифференциального уравнения первого порядка, не разрешенного относительно производной. Особые решения 145
5 Нормальные линейные системы дифференциальных уравнений с переменными коэффициентами 152
§ 1. Исследование задачи Коши для нормальной линейной системы уравнений с переменными коэффициентами 152
§ 2. Линейные однородные системы 158
§ 3. Линейные неоднородные системы 167
6 Линейные дифференциальные уравнения порядка п с переменными коэффициентами 171
§ 1. Общие свойства 171
§ 2. Линейные однородные уравнения порядка п 174
§ 3. Линейные неоднородные уравнения порядка п 179
§ 4. Граничные задачи 185
§ 5. Теорема Штурма 193
§ 6. Решение линейных дифференциальных уравнений с помощью степенных рядов. Уравнение Бесселя 199
§ 7. Линейные дифференциальные уравнения с малым параметром при старшей производной 205
7 Нормальные автономные системы дифференциальных уравнений и теория устойчивости 212
§ 1. Общие свойства 212
§ 2. Классификация положений равновесия линейной однородной системы второго порядка 222
§ 3. Нелинейные автономные системы второго порядка 230
§ 4. Устойчивость по Ляпунову положений равновесия 241
§ 5. Первые интегралы 251
8 Дифференциальные уравнения в частных производных первого порядка 261
Введение 261
§ 1. Линейные однородные уравнения 263
§ 2. Квазилинейные уравнения 271
§ 3. Нелинейные уравнения 281
9 Основы вариационного исчисления 289
Введение 289
§ 1. Простейшая вариационная задача 291
§ 2. Обобщения простейшей вариационной задачи на случай функционалов более общего интегрального типа 301
§ 3. Вариационные задачи со свободным концом, с подвижной границей и задача Больца 310
§ 4. О сильном локальном экстремуме и абсолютном экстремуме функционалов 318
§ 5. Изопериметрическая задача 322
§ 6. Задача Лагранжа 326
§ 7. Достаточные условия слабого локального экстремума 331
Литература 341
Предметный указатель 343
Купить книгу Курс дифференциальных уравнений и вариационного исчисления - Романко В.К.
Купить книгу Курс дифференциальных уравнений и вариационного исчисления - Романко В.К.
Теги: скачать учебник по дифференциальным уравнениям бесплатно :: дифференциальные уравнения :: Романко :: вариационное исчисление :: задача Коши
Смотрите также учебники, книги и учебные материалы:
- Конкретная математика - Основание информатики - Грэхем Р., Кнут Д., Паташник О.
- Лекции по математическому анализу - Архипов Г.И., Садовничий В.А., Чубариков В.Н.
- Высшая математика, том 3, Бугров Я.С., Никольский С.М.
- Курс высшей математики - Шестаков А.А., Малышева И.А., Полозков Д.П.
- Методы интегрирования обыкновенных дифференциальных уравнений - Матвеев Н.М.
- Математика, 5 класс, учебник, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
- Кратные и криволинейные интегралы - Элементы теории поля - Гаврилов В.Р. Иванова Е.Е. Морозова В.Д.
- Дифференциальное исчисление функций многих переменных - Канатников А.Н. Крищенко А.П. Четвериков В.Н.