интеграл

Методические указания для решения задач на интегралы с параметром, Калашников А.Л., Потёмин Г.В., Филиппов В.Н., 2016

Методические указания для решения задач на интегралы с параметром, Калашников А.Л., Потёмин Г.В., Филиппов В.Н., 2016.

   В пособии приведены методические указания для решения задач по курсу "Математический анализ" и теме “Интегралы от параметра”. На примерах продемонстрированы различные приёмы вычисления собственных и несобственных интегралов, зависящих от параметра. Представлены способы вычисления и исследования сходимости этих интегралов.
Пособие будет полезно при проведении практических занятий, коллоквиумов по математическому анализу и для самостоятельной работы студентов ИИТММ ННГУ.

Методические указания для решения задач на интегралы с параметром, Калашников А.Л., Потёмин Г.В., Филиппов В.Н., 2016
Скачать и читать Методические указания для решения задач на интегралы с параметром, Калашников А.Л., Потёмин Г.В., Филиппов В.Н., 2016
 

Таблицы неопределенных интегралов, справочник, Брычков Ю.А., Маричев О.И., Прудников А.П., 1986

Таблицы неопределенных интегралов, Справочник, Брычков Ю.А., Маричев О.И., Прудников А.П., 1986.

   Справочник содержит таблицы неопределенных интегралов от элементарных функций.
Предназначен для студентов высших учебных заведений, инженеров, научных работников.

Таблицы неопределенных интегралов, Справочник, Брычков Ю.А., Маричев О.И., Прудников А.П., 1986
Скачать и читать Таблицы неопределенных интегралов, справочник, Брычков Ю.А., Маричев О.И., Прудников А.П., 1986
 

Асимптотические разложения интегралов, том 3, Риекстыньш Э.Я., 1981

Асимптотические разложения интегралов, Том 3, Риекстыньш Э.Я., 1981.
 
   В третьем томе монографии с помощью методов, приведенных в первых двух томах, исследованы асимптотические представления коэффициентов степенных рядов и рядов Фурье и функций, определяемых функциональными рядами. Рассмотрены также другие методы построения асимптотических разложений интегралов, например применение интегральных преобразований и преобразований рядов, введение множителя сходимости, использование специальных соотношений н формул, в том числе формулы Парсеваля для преобразования Меллина. Даны также дополнения к материалу, изложенному в первых двух томах, причем большое внимание уделено асимптотическому разложению интегралов, содержащих функции с логарифмическими особенностями.

Асимптотические разложения интегралов, Том 3, Риекстыньш Э.Я., 1981
Скачать и читать Асимптотические разложения интегралов, том 3, Риекстыньш Э.Я., 1981
 

Асимптотические разложения интегралов, том 2, Риекстыньш Э.Я., 1977

Асимптотические разложения интегралов, Том 2, Риекстыньш Э.Я., 1977.
 
   Во втором томе монографии для построения асимптотических разложений интегралов используются понятия критических точек и деформирования пути интегрирования в комплексной плоскости. В частности, рассматриваются разные обобщения метода перевала. Большое внимание уделяется деформированию пути с учетом расположения особых точек подынтегральной функции. Исследуются интегралы обращения преобразований Лапласа и Меллина и их обобщения. Приведены исторические и библиографические сведения, а также обзор имеющейся литературы.

Асимптотические разложения интегралов, Том 2, Риекстыньш Э.Я., 1977
Скачать и читать Асимптотические разложения интегралов, том 2, Риекстыньш Э.Я., 1977
 

Асимптотические разложения интегралов, том 1, Риекстыньш Э.Я., 1974

Асимптотические разложения интегралов, Том 1, Риекстыньш Э.Я., 1974.
 
   В первом томе монографии излагается общая теория асимптотических разложений и рассматривается асимптотическое разложение интегралов, зависящих от большого и малого параметров. При разложении используются методы, основанные на интегрировании по частям и разложении подынтегральной функции в ряд. Материал содержит обзор имеющейся литературы, а также результаты оригинальных исследований. Приводятся исторические и библиографические сведения.

Асимптотические разложения интегралов, Том 1, Риекстыньш Э.Я., 1974
Скачать и читать Асимптотические разложения интегралов, том 1, Риекстыньш Э.Я., 1974
 

Определенный и кратные интегралы, Элементы теории поля, Егоров В.И., Салимова А.Ф., 2004

Определенный и кратные интегралы, Элементы теории поля, Егоров В.И., Салимова А.Ф., 2004.

   В издании представлена теория и основные приложения определенного и кратных интегралов, а также элементы теории поля. Материал адаптирован к современной программе математического образования в высших технических учебных заведениях, к использованию в компьютерных обучающих системах. Книга предназначается студентам технических вузов. Она также может оказаться полезной преподавателям, инженерам, научным работникам.

Определенный и кратные интегралы, Элементы теории поля, Егоров В.И., Салимова А.Ф., 2004
Скачать и читать Определенный и кратные интегралы, Элементы теории поля, Егоров В.И., Салимова А.Ф., 2004
 

Мера и интеграл, Толстов Г.П., 1976

Мера и интеграл, Толстов Г.П., 1976.

Книга содержит краткое и довольно простое изложение элементов теории абстрактной меры и интеграла (включая меру и интеграл Лебега и Лебега — Стилтьеса). Она может оказаться полезной студентам математических специальностей университетов и педагогических институтов, а также студентам инженерно математических специальностей втузов, аспирантам и заинтересованным научным работникам.

Мера и интеграл, Толстов Г.П., 1976
Скачать и читать Мера и интеграл, Толстов Г.П., 1976
 

Основы математического анализа, Модуль определенный интеграл и несобственные интегралы, Зубова И.К., Острая О.В., Анциферова Л.М., Рассоха Е.Н., 2017

Основы математического анализа, Модуль определенный интеграл и несобственные интегралы, Зубова И.К., Острая О.В., Анциферова Л.М., Рассоха Е.Н., 2017.
 
   Самоучитель «Основы математического анализа» представляет собой комплекс методических материалов, который должен помочь студенту в самостоятельной работе над курсом математического анализа. Этот самоучитель состоит из нескольких пособий. Данное пособие посвящено понятиям определенного и несобственного интегралов. которые рассматриваются во втором семестре. Дается определение определённого интеграла как предела интегральных сумм, доказывается интегральная теорема о среднем и следствия из нее, выводится формула Ньютона-Лейбница для вычисления определенного интеграла, рассматривается применение определенного интеграла к вычислению различных геометрических величин. Вводится понятие несобственного интеграла как обобщение определенного интеграла для неограниченных функций и бесконечного промежутка интегрирования. Приводятся некоторые сведения из истории развития интегральных методов.
Кроме теоретических сведений, представлены типичные задачи с решениями по каждой теме, вопросы для самоконтроля и задачи для самостоятельного решения, а также перечень теоретических вопросов к экзамену по разделу «Интегральное исчисление функции одной переменной». В связи с этим самоучитель рекомендуется для самостоятельной работы студентов.
Самоучитель предназначен для студентов, обучающихся по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии, но может использоваться всем обучающимся по физико-математическим, естественнонаучным и инженерно-техническим направлениям подготовки.

Основы математического анализа, Модуль определенный интеграл и несобственные интегралы, Зубова И.К., Острая О.В., Анциферова Л.М., Рассоха Е.Н., 2017
Скачать и читать Основы математического анализа, Модуль определенный интеграл и несобственные интегралы, Зубова И.К., Острая О.В., Анциферова Л.М., Рассоха Е.Н., 2017
 
Другие статьи...

Показана страница 4 из 8