Теория нумераций, Ершов Ю.Л., 1977

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Теория нумераций, Ершов Ю.Л., 1977.

   Предлагаемая читателю книга представляет собой введение в проблематику и методы теории нумераций — нового развивающегося раздела теории алгоритмов. Насколько известно автору, впервые идею о систематическом изучении нумерованных множеств высказал А. Н, Колмогоров в середине пятидесятых годов. Реализацией этой идеи для вычислимых нумераций в то время занялся В, А, Успенский. Основные его результаты изложены в статье [63] и в книге [10], вышедшей в I960 году. Параллельно ряд зарубежных математиков (Райс, Деккер, Майхилл, Фридбсрг, Лахлан, Лакомб, Пур-Эль и др.) также занимались изучением различных вопросов, связанных с вычислимыми нумерациями.

Теория нумераций, Ершов Ю.Л., 1977


О теории нумераций.
Наиболее «инвариантной» частью для всех существующих в настоящее время в математике уточнений понятия алгоритма является класс частично рекурсивных арифметических функций (под частичной арифметической функцией понимается частичное отображение из конечной декартовой степени множества натуральных чисел N в N)—тех и только тех частичных арифметических функций, которые ВЫЧИСЛИМЫ в любом из предложенных в качестве уточнения алгоритмической вычислимости смысле. По существу эта инвариантность и позволяет говорить об эквивалентности всех уточнений и укрепляет уверенность в том, что класс всех частично рекурсивных функций совпадает с классом всех частичных арифметических функций, допускающих эффективное (в интуитивном смысле) вычисление.

Поэтому представляется желательным, чтобы все исследования в теории алгоритмов и ее приложениях проводились на основе «общего знаменателя» — класса всех частично рекурсивных функции. Одним из способов такой редукции к натуральным числам и арифметическим функциям, который неоднократно с успехом использовался уже в теории алгоритмов и математической логике, является использование подходящей нумерации, т. е. отображения некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов (формул, слов, матриц и т. п.). Наиболее блистательным примером использования нумерации является доказательство К. Геделем своих знаменитых теорем о неполноте.

ОГЛАВЛЕНИЕ.
Предисловие.
Введение.
§1. О теории нумераций.
§2. Предварительные сведения.
§3. Некоторые сведения из алгебры.
§4. Теоретико-категорные понятия.
Глава 1 Вычислимые нумерации.
§1. Основные понятия.
§2. Главные нумерации.
§3. Отделимые нумерации.
§4. Полурешетка L0 (R) (случай конечного.
§5. Полурешетка L0 (R) (общий случай).
§6. Минимальные нумерации.
Глава 2 Категория R нумерованных множеств.
§1. Нумерации множества и его подмножеств.
§2. Категория R нумерованных множеств и ее свойства.
§3. Подобъекты нумерованного множества.
§4. Предполно и полно нумерованные множества.
§3. Позитивно нумерованные множества.
§6. Нумерованные множества с аппроксимацией.
Глава 3 Нумерованные множества и m-сводимость.
§1. Кратная m-сводимость.
§2. Индексные множества.
§3. Полнота и m-универсальностъ.
§4. Структурные теоремы о полно нумерованных множествах.
§5. Креативность и m-универсальность для вычислимых нумераций.
§6. Совершенные эквивалентности.
Глава 4 Вычислимые функционалы.
§1. Вычислимые нумерации морфизмов.
§2. Некоторые частные случаи.
§3. Условия разрешимости проблемы Р.
§4. Теория f-пространств.
§5. Вычислимые функционалы.
§6. Всюду определенные функционалы.
Приложение I. Описание славных идеалов полурешетки рекурсивно перечислимых m-степеней.
Приложение II. Алгебраическая характеризация полурешеток нумераций конечных множеств.
Литература.
Предметный указатель.
Указатель обозначений.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория нумераций, Ершов Ю.Л., 1977 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-26 21:48:28