Оптимизация, Теория, примеры, задачи, Учебное пособие, Галеев Э.М., 2010.
Настоящая книга посвящена важнейшим проблемам оптимизации. В ее основе лежат курсы и спецкурсы по теории оптимизации, прочитанные автором на механико-математическом факультете МГУ. Рассматриваются фрагменты следующих разделов теории экстремальных задач: линейного и выпуклого программирования, математического программирования, классического вариационного исчисления и оптимального управления. Приводятся как необходимые, так и достаточные условия экстремума. Для изучения этих разделов в необходимом объеме даются элементы функционального и выпуклого анализа. В каждом параграфе после теоретической части приводятся примеры решения задач, предлагаются задачи для решения на семинарах, в контрольных работах, а также для самостоятельного усвоения материала. Дается обзор общих методов теории экстремума. Для студентов вузов, обучающихся по специальностям «Математика», «Прикладная математика», а также для аспирантов, преподавателей и научных работников.
Предисловие.
Задачи на отыскание наибольших и наименьших величин являются актуальными на протяжении всей истории развития человечества. Особенное значение они приобретают в настоящее время, когда возрастает важность наиболее эффективного использования природных богатств, людских ресурсов, материальных и финансовых средств. Все это приводит к необходимости отыскивать наилучшее, или, как говорят, оптимальное решение того или иного вопроса. Первые задачи на максимум и минимум были поставлены и решены в глубокой древности, когда математика только зарождалась как наука. Теория экстремальных задач начала создаваться в начале XVII века, и затем она активно развивалась вплоть до наших дней, включая в свою орбиту крупнейших математиков, таких как Ферма, Ньютон, Лейбниц, Бернулли, Эйлер, Лагранж, Пуанкаре, фон Нейман, Канторович, Пон-трягин и других. В наше время невозможно мыслить себе полноценное математическое образование без элементов теории экстремума.
Оглавление.
Предисловие ко второму и третьему изданиям.
Предисловие.
Введение.
Глава 1.Экстремальные задачи.
Глава 2.Линейное программирование.
Глава 3.Вариационное исчисление.
Глава 4.Задачи оптимального управления.
Глава 5.Условия второго порядка в вариационном исчислении.
Список литературы.
Список обозначений.
Предметный указатель.
Купить .
Теги: Галеев :: книги по математике :: математика :: функциональный анализ
Смотрите также учебники, книги и учебные материалы:
- Теория групп, Курош А.Г., 2011
- Основы теории игр, Учебное пособие, Колобашкина Л.В., 2021
- Основы теории игр, Учебное пособие, Колобашкина Л.В., 2014
- Особенности процессов многократного рассеяния, Фам Ф., 1972
- Математические модели небесной механики, Кузьмина Р.П., 2018
- Комбинаторика, Статистика, Вероятность, Шахмейстер А.Х., 2012
- Вибрационная механика и вибрационная реология, Теория и приложения, Блехман И.И., 2018
- Аналитическая геометрия в пространстве, Учебное пособие, Деменева Н.В., 2020