Математическая логика и теория алгоритмов, Вайнштейн Ю.В., Пенькова Т.Г., Вайнштейн В.И., 2019.
Изложены темы, традиционно изучаемые в курсе математической логики и теории алгоритмов: алгебра логики и исчисление высказывании, логика и исчисление предикатов, формальные аксиоматические теории, теория алгоритмов и теория вычислительной сложности.
Предназначено для студентов направления подготовки 09.03.04 «Программная инженерия». Также будет полезно студентам направлений 09.03.02 «Информационные системы и технологии», 27.03.03 «Системный анализ и управление».
Введение в алгебру логики.
Рассмотрим двухэлементное множество В и двоичные переменные, принимающие значения из В. Его элементы часто обозначают 0 и 1, однако они не являются числами в обычном смысле. Наиболее распространенная интерпретация двоичных переменных: «да» -«нет», «истинно» (И) - «ложно» (Л). Поэтому будем считать, что В = {0, 1}, рассматривая 0 и 1 как некоторые формальные символы.
Алгебра, образованная двухэлементным множеством В = {0, 1} вместе со всеми возможными операциями на нем, называется алгеброй логики.
Функцией алгебры логики (логической функцией) от n-переменных называется n-арная операция на множестве {0, 1}. Логическая функция f(x1, х2, х3, ..., хn) - это функция, принимающая значения 0, 1. Множество всех логических функций обозначается Р2, множество всех логических функций n переменных - Р2 (n).
Исходным понятием математической логики является «высказывание». Высказыванием называется повествовательное предложение, о котором можно сказать в данный момент, что оно истинно или ложно, но не то и другое одновременно. Логическим значением высказывания являются «истина» или «ложь».
ОГЛАВЛЕНИЕ.
Введение.
1. Алгебра логики.
1.1. Введение в алгебру логики.
1.2. Формулы алгебры логики.
1.3. Законы алгебры логики.
1.4. Стандартные формы представления формул алгебры логики.
1.5. Функционально полные системы элементарных булевых функций.
Практические задания.
2. Формальные теории.
2.1. Исчисление высказываний как формальная теория.
2.2. Исчисление предикатов как формальная теория.
2.3. Автоматическое доказательство теорем. Принцип резолюций.
Практические задания.
3. Теория алгоритмов.
3.1. Основные понятия теории алгоритмов.
3.2. Машина Тьюринга.
3.3. Вычислимые по Тьюрингу функции.
Практические задания.
Заключение.
Библиографический список.
Купить .
Теги: учебник по математике :: математика :: Вайнштейн :: Пенькова :: Вайнштейн
Смотрите также учебники, книги и учебные материалы:
- Геометрические тела, часть 1, Шар, Приходько В.Н., 2014
- Дидактика в схемах и таблицах, учебное пособие, Коркина В.И., 2013
- Математика, Вайткене Л.Д., 2017
- Принципы комплексного анализа, Львовский С.М., 2017
- К теории уравнений смешанного типа, Сабитов К.Б., 2014
- Математика, Пробный учебник для 1 класса с русским языком обучения общеобразовательных средних школ, часть 2, Мавлянова С.С., Сатдыкова М.Ю., Черникова В.А., Рулиева Л.Ф., 2013
- Высшая математика, Баврин И.И., Матросов В.Л., 2003
- Теория и методика обучения математике в системе профессионального образования, часть 3, Частная методика, Кондаурова И.К., 2017