Содержание настоящей книги охватывает вузовский курс дискретной математики, включая перечислительную комбинаторику, булевы функции, графы, алгоритмы, помехоустойчивое кодирование и криптографию, а также ряд дополнительных тем. Принцип построения «от простого — к сложному» делает начальные разделы каждой главы доступными для старшеклассника, а заключительные — ценными для аспиранта. Для самостоятельного решения предлагается большое число задач различной сложности, снабженных ответами и указаниями. В книге рассказывается также об истории математических открытий и формулируются открытые проблемы дискретной математики. Книга состоит из двух томов. В первом томе даются основные идеи и понятия дискретной математики, изучаются теория и методы перечисления, булевы функции. Второй том, посвященный графам, алгоритмам в дискретной математике, теории кодирования, выходит одновременно с первым в нашем издательстве. Написанная доступным языком, в яркой форме и с многочисленными примерами, книга будет полезна широкому кругу читателей, желающих познакомиться с основами дискретной математики.
Множества.
Множество — это собрание определённых и различимых между собой объектов нашей интуиции или интеллекта, мыслимых как единое целое.
Так определил важнейшее для математики понятие основоположник теории множеств Георг Кантор (1845-1918) во второй половине XIX века. Составляющие множество объекты называются элементами множества. Иногда, руководствуясь геометрическими представлениями, их называют также точками. Само понятие множества, попыткой прояснить которое является приведенное определение, давно укоренилось в нашем сознании и отражено в естественном языке. Так, мы говорим о компании людей, косяке рыб, стае птиц и т. д. Если основным множеством, с которым имеет дело математический анализ, является множество действительных чисел, то в центре внимания дискретной математики находятся конечные множества, т. е. множества, состоящие из конечного числа элементов.
Общий метод задания произвольного множества состоит в формулировке некоторого характеристического свойства, которым обладают элементы множества и только они. Например, множество натуральных чисел, делящихся на 5, или множество людей, проживающих в определенном населённом пункте. Первое из множеств бесконечно, второе, очевидно, конечно. Конечное множество А может быть, в принципе, задано и простым перечислением своих элементов в произвольном порядке, которое принято записывать в фигурных скобках: А = {а1,..., аn}. Таким образом. {а1, а2, a3} и {a3, а2, а1} обозначают одно и то же — множество, состоящее из трёх элементов: а1, а2, a3. Если А — множество, состоящее из n элементов, то говорят, что мощность множества А равна n и пишут |A| = n. Тот факт, что аi является элементом множества А, записывается как аi Œ A.
Оглавление
Предисловие
Глава 0. Вводная
Множества (15); перестановки (16); подмножества (16); счетные множества (18); континуум (20); операции над множествами (22); прямое произведение (24); вероятность (26); теория чисел (36); векторы (44); отношения (49); функции (54); подстановки (57); группы (59); подгруппы и факторгруппы (68); кольца и поля (71); расширения полей (77); изоморфизм (80); графы (84); доказательства от противного (88); математическая индукция (89); необходимые и достаточные условия(93)
Задачи для самостоятельного решения
Литература
Глава 1. Методы перечисления
1.1.Комбинаторные числа
1.2.Биномиальные коэффициенты
1.3.Формула «включения и исключения»
1.4.Приложения к теории вероятностей
1.5.Производящие функции и рекуррентные соотношения
1.6.Перечисление классов эквивалентности. Теория Пойа
1.7.Асимптотические оценки. Формула Стирлинга
Задачи для самостоятельного решения
Литература
Глава 2. Булевы функции
2.1.Булевы функции и логические связки
2.2.Формулы и преобразования
2.3.Булевы функции и схемы
2.4.Дизъюнктивная и конъюнктивная нормальные формы
2.5.Двойственность
2.6.Геометрия единичного n-мерного куба
2.7.Полные системы функций. Теорема Поста
2.8.Пороговая логика
Задачи для самостоятельного решения
Литература
Ответы и указания к решению задач
Оглавление тома 2.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу По океану дискретной математики, От перечислительной комбинаторики до современной криптографии, том 1, Основные структуры, Методы перечисления, Булевы функции, Зуев Ю.А., 2012 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - pdf - Яндекс.Диск.
Дата публикации:
Теги: учебник по математике :: математика :: Зуев
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Труды по кинетической теории, Максвелл Д.К., 2015
- Современная геометрия, Методы и приложения, том 3, Теория гомологий, Дубровин Б.А., Новиков С.П., Фоменко А.Т., 2001
- Современная геометрия, Методы и приложения, том 2, геометрия и топология многообразий, Дубровин Б.А., Новиков С.П., Фоменко А.Т., 1998
- Современная геометрия, Методы и приложения, том 1, геометрия поверхностей, групп преобразований и полей, Дубровин Б.А., Новиков С.П., Фоменко А.Т., 1998
Предыдущие статьи:
- Нестандартные уроки, математика, 5-10 класс, Чернокнижникова Л.М., 2010
- Метрические пространства, Сибириков Г.В., Мартынов Ю.А., 2012
- Занимательная математика, анализ Фурье, Манга, Сибуя М., 2014
- Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, Драгович В., Раднович М., 2010