Доказательства из Книги, Лучшие доказательства со времен Евклида до наших дней, Айгнер М., Циглер Г., 2006.
В книге собраны красивые и глубокие теоремы из различных областей теории чисел, геометрии, анализа, комбинаторики, теории графов. Доказательства этих теорем используют неожиданные сочетания разнородных идей. Изложение материала сопровождается большим числом иллюстраций.
Книга предназначена всем, кто увлечен математикой: в первую очередь студентам, аспирантам, а также преподавателям, научным работникам и просто любителям изящных математических рассуждений. Многое в книге доступно школьникам старших классов.
Каждое конечное кольцо с делением — поле.
Кольца являются важными структурами в современной алгебре. Если кольцо Я имеет мультипликативный единичный элемент 1 и каждый ненулевой элемент имеет мультипликативный обратный, то Я называется кольцом с делением. Единственное, чем такое кольцо Я может отличаться от поля, — это коммутативность умножения. Известный пример некоммутативного кольца с делением — кольцо кватернионов, открытое Гамильтоном. Но, как видно из названия главы, каждое некоммутативное кольцо с делением бесконечно. Если Я конечно, то из аксиом следует, что умножение в Я коммутативно.
Этот результат, который теперь является классическим, поразил воображение многих математиков; например, Херштейн назвал его «совершенно неожиданной взаимосвязью двух кажущихся далекими друг от друга вещей: числа элементов в некоторой алгебраической системе и свойств умножения в этой системе».
Купить .
Теги: учебник по математике :: математика :: Айгнер :: Циглер
Смотрите также учебники, книги и учебные материалы:
- Мир математики, том 18, Энрике Грасиан, Открытие без границ, Бесконечность в математике, 2014
- Краткий курс высшей математики, Натансон И.П., 1999
- Метод координат, Гельфанд И.М., Глаголева Е.Г., Кириллов А.А., 1968
- Математический цветник, Кларнер Д.А., 1983
- Введение в многомерный статистический анализ, Андерсон Т., 1963
- Что такое математика, Беседы во время морского путешествия, Геффтер Л., 2010
- Высшая математика в примерах и задачах, том 3, Черненко В.Д., 2003
- Высшая математика в примерах и задачах, том 2, Черненко В.Д., 2003