Дискретная математика, конспект лекций, Гусев С.А., Сарычева О.М., 2003

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003.

   Данный конспект лекций составлен на основе курса лекций, читаемого авторами для студентов I курса факультета бизнеса Новосибирского государственного технического университета. В нем излагаются основы таких разделов дискретной математики, как «Теория множеств», «Алгебра логики», «Комбинаторика», «Теория графов».
Работа предназначена для студентов и лиц, начинающих изучать дискретную математику.

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003


Общие правила комбинаторики.
Комбинаторика - это раздел дискретной математики, который изучает способы подсчета числа элементов различных конечных множеств. Многие правила комбинаторики решаются с помощью двух основных правил: правила суммы и правила произведения.

Рассмотрим правило суммы. Пусть, например, в урне 3 красных шара. Тогда выбрать красный шар без возвращения можно 3 способами. Если в урне 3 красных и 2 белых шара, то выбрать красный или белый шар можно 3+2=5 способами. В общем случае, если объект А может быть выбран m способами, а объект В п способами при условии, что одновременный выбор А и В невозможен, то выбор «А или В» можно осуществить m+n способами.

Содержание
ВВЕДЕНИЕ
I. ТЕОРИЯ МНОЖЕСТВ
1. Понятие множества, операции над множествами
2. Прямое произведение множеств
3. Отношения и функции
4. Взаимнооднозначные соответствия и мощности множеств
5. Специальные бинарные отношения
II. АЛГЕБРА ЛОГИКИ
1. Понятие алгебры
2. Логические функции
3. Булева алгебра логических функций и эквивалентные преобразования в ней
4. Нормальные формы
5. Минимизация логических функций
6. Полнота системы логических функций
III. ОСНОВЫ КОМБИНАТОРИКИ
1. Общие правила комбинаторики
2. Размещения с повторениями
3. Размещения без повторений
4. Перестановки
5. Перестановки с повторениями
6. Сочетания без повторений
7. Сочетания с повторениями
8. Свойства сочетаний
IV. ОСНОВЫ ТЕОРИИ ГРАФОВ
1. Основные понятия и определения
2. Матрицы инциденций и смежности
3. Бинарные операции над графами
Литература.

Купить .
Дата публикации:






Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-01-06 20:00:22