Данный учебник представляет собой весьма полный современный вводный курс обыкновенных дифференциальных уравнений. Довольно подробно освещены все темы, затрагиваемые в классических вводных курсах, включая применение матричных методов, операционного исчисления, степенных рядов и рядов Фурье. Не обойдены вниманием и современные исследования в области дифференциальных уравнений, такие как, например, хаос в динамических системах и нелинейные явления и системы. Особое внимание авторы уделяют численным методам и обучению построения математических моделей самых разнообразных (например, экологических, физических, инженерных) систем. Для изучения таких моделей авторы используют самые современные математические пакеты: MATLAB, Maple и Mathematica. Кроме того, для каждого раздела имеются задачи различной сложности, а также проекты для самостоятельной разработки студентами. Несомненно, книга будет полезна всем, кто изучает дифференциальные уравнения — как математикам, так и студентам других специальностей — инженерам, физикам, химикам, биологам, географам и геологам.
Дифференциальные уравнения первого порядка.
Однако весьма возможно, что ни одно решение дифференциального уравнения не соответствует всей известной информации. В таком случае мы должны заподозрить, что дифференциальное уравнение неточно описывает реальный мир. Например, решения уравнения (6) имеют вид P(t) = Cekt, где С — положительная константа, но ни для какого значения констант к и С функция P(t) не описывает точно фактический рост населения во всем мире в течение нескольких прошлых столетий. Возможно, мы должны поэтому написать более сложное дифференциальное уравнение, в котором принимается во внимание влияние перенаселения на коэффициент рождаемости, нехватка продовольствия и другие факторы. Это должно быть расценено не как отказ от модели, разобранной в примере 5, а как понимание того, что нужно учесть влияние дополнительных факторов при изучении роста численности населения. Действительно, уравнение (6) является весьма точным при некоторых обстоятельствах. Например, оно выполняется для роста численности колонии бактерий при условиях неограниченного продовольствия и пространства.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Дифференциальные уравнения и краевые задачи, Моделирование и вычисление с помощью Mathematica, Maple и MATLAB, Эдвардс Ч.Г., Пенни Д.Э., 2008 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - djvu - Яндекс.Диск.
Дата публикации:
Теги: учебник по математике :: математика :: Эдвардс :: Пенни
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013
- Дискретная математика, конспект лекций, Гусев С.А., Сарычева О.М., 2003
- Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014
- Математика и информатика, Филимонова Л.В., Быкова Е.А., 2001
Предыдущие статьи:
- Высшая математика, математический анализ и дифференциальные уравнения, часть 2, Шилкина Е.И., Дымков М.П., 2005
- Основы математики для экономистов, линейная алгебра и экономические модели, Дыхта В.А., 2003
- Дискретная математика для программистов, Новиков Ф.А., 2007
- Высшая математика, Элементы линейной алгебры и аналитической геометрии, том 1, Бугров Я.С., Никольский С.М., 2004