Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000.
Отличается от имеющихся учебных руководств по обыкновенным дифференциальным уравнениям большей, чем это обычно принято, связью с приложениями, в особенности с механикой, и более геометрическим, бескоординатным изложением. В соответствии с этим в книге мало выкладок, но много понятий, необычных для курса дифференциальных уравнений (фазовые потоки, однопараметрические группы, диффеоморфизмы, касательные пространства и расслоения) и примеров из механики (например, исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс).
Для студентов и аспирантов механико-математических факультетов университетов и ВУЗов с расширенной программой по математике, но будет интересна и специалистам в области математики и ее приложений.
Фазовые пространства.
Теория обыкновенных дифференциальных уравнений — одно из основных орудий математического естествознания. Эта теория позволяет изучать всевозможные эволюционные процессы, обладающие свойствами детерминированности, конечномерности и дифференцируемости. Прежде чем дать точные математические определения, рассмотрим несколько примеров.
1. Примеры эволюционных процессов. Процесс называется детерминированным, если весь его будущий ход и все его прошлое однозначно определяются состоянием в настоящее время. Множество всевозможных состояний процесса называется фазовым пространством.
Так, например, классическая механика рассматривает движение систем, будущее и прошлое которых однозначно определяются начальными положениями и начальными скоростями всех точек системы. Фазовое пространство механической системы — это множество, элементом которого является набор положений и скоростей всех точек данной системы.
Движение частиц в квантовой механике не описывается детерминированным процессом. Распространение тепла — полудетерминированный процесс: будущее определяется настоящим, а прошлое — нет.
Процесс называется конечномерным, если его фазовое пространство конечномерно, т. е. если число параметров, нужных для описания его состояния, конечно. Так, например, ньютоновская механика систем из конечного числа материальных точек или твердых тел относится к этому классу. Размерность фазового пространства системы из п материальных точек равна 6n, а системы из n твердых тел — 12n. Движения жидкости, изучаемые в гидродинамике, процессы колебаний струны и мембраны, распространение волн в оптике и акустике — примеры процессов, которые нельзя описать с помощью конечномерного фазового пространства.
Оглавление
ГЛАВА I. Основные понятия
§ 1. Фазовые пространства
§ 2. Векторные поля на прямой
§ 3. Линейные уравнения
§ 4. Фазовые потоки
§ 5. Действие диффеоморфизмов на векторные поля и на поля направлений
§ 6. Симметрии
ГЛАВА II. Основные теоремы
§ 7. Теоремы о выпрямлении
§ 8. Применения к уравнениям выше первого порядка
§ 9. Фазовые кривые автономной системы
§ 10. Производная по направлению векторного поля и первые интегралы
§ 11. Линейные и квазилинейные уравнения первого порядка с частными производными
§ 12. Консервативная система с одной степенью свободы
ГЛАВА III. Линейные системы
§ 13. Линейные задачи
§ 14. Показательная функция
§ 15. Свойства экспоненты
§ 16. Определитель экспоненты
§ 17. Практическое вычисление матрицы экспоненты — случай вещественных и различных собственных чисел
§ 18. Комплексификация и овеществление
§ 19. Линейное уравнение с комплексным фазовым пространством
§ 20. Комплексификация вещественного линейного уравнения
§ 21. Классификация особых точек линейных систем
§ 22. Топологическая классификация особых точек
§ 23. Устойчивость положений равновесия
§ 24. Случай чисто мнимых собственных чисел
§ 25. Случай кратных собственных чисел
§ 26. О квазимногочленах
§ 27. Линейные неавтономные уравнения
§ 28. Линейные уравнения с периодическими коэффициентами
§ 29. Вариация постоянных
ГЛАВА IV. Доказательства основных теорем
§ 30. Сжатые отображения
§ 31. Доказательство теорем существования и непрерывной зависимости от начальных условий
§ 32. Теорема о дифференцируемости
ГЛАВА V. Дифференциальные уравнения на многообразиях
§ 33. Дифференцируемые многообразия
§ 34. Касательное расслоение. Векторные поля на многообразии
§ 35. Фазовый поток, заданный векторным полем
§ 36. Индексы особых точек векторного поля
Программа экзамена
Образцы экзаменационных задач
Предметный указатель.
Купить книгу Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000 .
Купить книгу Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000 .
Теги: учебник по математике :: математика :: Арнольд :: квазимногочлен
Смотрите также учебники, книги и учебные материалы:
- Цепные дроби, Арнольд В.И., 2001
- Особенности дифференцируемых отображений, Классификация критических точек, каустик и волновых фронтов, Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М., 1982
- Современные проблемы математики, Математические аспекты классической и небесной механики, том 3, Арнольд В.И., Козлов В.В., Нейштадт А.И., 1989
- Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И., 2000
- Таблица умножения в кроссвордах, тренажер, 2-3 класс, Бережнова Л.Р.
- Учимся решать задачи, 4 класс, Белошистая А., 2011
- Математика, Комплексный тренажер, 3 класс, Барковская Н.Ф., 2011
- Алгебра векторов и матриц, Рудык Б.М., 2008