Высшая геометрия, Клейн Ф., 2004

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Высшая геометрия, Клейн Ф., 2004.

   Книга выдающегося немецкого математика Ф.Клейна (1849--1925) создана на основе лекций по высшей геометрии, прочитанных им в Гёттингенском университете и подготовленных к печати его учениками и последователями. Автор разделяет геометрию на две отдельные части: геометрия в ограниченной части пространства, к которой относятся почти все применения дифференциальных и интегральных исчислений, и геометрия в полном пространстве, к которой относится теория алгебраических образов. Обе части подробно рассмотрены в книге, параграфы которой расположены таким образом, чтобы читатель, знакомясь с важнейшими понятиями геометрии, видел, как они развивались с течением времени и какие успехи вследствие этого делала данная область науки.
Предназначена для специалистов - математиков и физиков, использующих в своих исследованиях применения геометрии, а также для студентов и аспирантов.

Высшая геометрия, Клейн Ф., 2004

Основное разделение геометрии.
В соответствии с изложенным мы можем также и геометрию расчленить на две отдельные части, именно:
1. Геометрия в ограниченном куске пространства, соответственно с применением только элементов функций.
2. Геометрия в полном пространстве, соответственно с применением полных функций.

К первой части относятся почти все применения дифференциального и интегрального исчислений к геометрии. Действительно, если мы производим построение касательных к кривой, если мы исследуем кривизну кривых или поверхностей, то при этом мы всегда принимаем во внимание только малый ограниченный кусок области, не заботясь о том, какие особенности может иметь наш образ вне рассматриваемой области. Сюда также относится в своей большей части разработанная Гауссом теория поверхностей.

С другой стороны, теория алгебраических кривых и поверхностей относится по преимуществу ко второй части, так как при большинстве исследований по поводу этих образов, например, при нахождении точек пересечения или линий пересечения нескольких таких образов мы всегда рассматриваем эти образы в целом.

Оглавление
Предисловие
Введение
§1. Общие предварительные замечания
§1,1. Основные теоретико-функциональные понятия
§1,2. Основное разделение геометрии
§1,3. Дальнейшие относящиеся сюда сведения
Первая часть
ОБЩЕЕ ПОНЯТИЕ КООРДИНАТ
Точечные координаты
§2. Линейные координаты
§3. Работы Плюкера
§4. Общие криволинейные координаты
§5. Эллиптические координаты
§6. Геодезические линии на поверхностях второй степени
§7. Построения из нитей Гревса и Штауде
§8. Теория кругов и шаров. Исторические замечания
§9. Элементарная геометрия круга
§10. Преобразования посредством обратных радиусов (инверсия)
§11. Пентасферические координаты
§12. Применения пентасферических координат
§13. Циклиды Дюпена
§14. Классификация рассмотренных до сих пор объектов аналитической геометрии
§15. Билинейные уравнения и двойственность
§16. Нуль-система
§17. Применения нуль-системы
§18. Геометрическое истолкование дифференциальных уравнений
Замена пространственных элементов
§19. Общий принцип Плюкера
§20. Прямолинейные координаты
§21. Линейные многообразия линейчатой геометрии
§22. Линейный комплекс, как пространственный элемент
§23. Привлечение вспомогательных средств из теории квадратичных форм
§24. Сравнение с пентасферическими координатами
§25. Геометрия сфер Ли
§26. Соотношение между асимптотическими линиями и линиями кривизны
§27. Исторические замечания о геометрии сфер
§28. Привлечение многомерного пространства Грассманом и Кели
§29. Круги в пространстве, пентацикл Стефаноса
§30. Коннексы Клебша
§31. Основные формулы для кривизны поверхности
§32. Введение плоскостных координат в дифференциальные уравнения
ТЕОРИЯ ПРЕОБРАЗОВАНИЙ.
Точечные преобразования пространства
§33. Линейные преобразования
§34. Перспектограф и пантограф
§35. Рельефная перспектива и перспектива изображения
§36. Ньютонова классификация кривых третьего порядка
§37. Понселе и учение о двойных отношениях
§38. Штейнер и Шаль
§39. Кели и Штаудт
§40. О теории инвариантов
§41. W-кривые Клейна и Ли
§42. Проективная дифференциальная геометрия
§43. Теория конфокальных конических сечений в мнимой области
§44. Мнимые коллинеации
§45. Стереографическая проекция
§46. Изотропные кривые и конформные отображения поверхностей
§47. Теория минимальных поверхностей Ли
§48. Новейшие рассмотрения стереографической проекции и тетрациклических координат
§49. Группа сродства кругов Мебиуса
§50. Теорема Лиувилля о конформных отображениях пространства
§51. Принцип перенесения Гесса
§52. Плоские конфигурации
§53. Взаимные планы сил графической статики
§54. Общие аналитические точечные преобразования
§55. Классификация выражений Пфаффа
§56. Проблема Пфаффа
§57. Введение квадратичных дифференциальных форм Гауссом
§58. Дифференциаторы Бельтрами
§59. Пространство Римана
§60. Дальнейшая литература о квадратичных дифференциальных формах
§61. Кремоновы преобразования
Замена пространственных элементов
§62. Двойственное преобразование, как преобразование прикосновения
§63. Первое введение общих преобразований прикосновения
§64. Обе группы преобразований геометрии сфер
§65. Изотропная проекция на Rn+1 на Rn
§66. Изотропная проекция R3 на R2
§67. Группа Лагерра и эквилонгальные отображения на плоскости
§68. Перенесение на высшие размерности
§69. Группа геометрии прямых линий Плюкера
§70. Связь между геометрией прямых линий Плюкера и геометрией сфер Ли
§71. Элементарно-геометрическое рассмотрение прямолинейно-сферического преобразования
§72. Теория характеристик дифференциальных уравнений с частными производными первого порядка
§73. Дифференциальные уравнения с частными производными геометрии линий и геометрии сфер
§74. Общая теория преобразований прикосновения
§75. Дальнейшие примеры преобразований прикосновения
§75,1. Подэры
§75,2. Зубчатые колеса
§75,3. Преобразования прикосновения, сохраняющие периметр
§75,4. Вариации постоянных
§76. Теория инвариантов преобразований прикосновения
Третья часть. ПРИМЕРЫ ГЕОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ ИЗ ПОСЛЕДНИХ ДЕСЯТИЛЕТИЙ. ДОПОЛНЕНИЯ.
Геометрия линий Штуди
§77. Принцип перенесения Штуди
§78. Аналоги дуальным проективитетам на плоскости в геометрии линий
§79. Аналоги дуальному сродству окружностей в геометрии линий.
Литература
§80. Евклидово отображение эллиптической неевклидовой пространственной геометрии
§81. Кинематическое отображение
Радоновы механические соображения о параллелизме Леви-Чивита
§82. Уравнения движения
§83. Асимптотическая интеграция
§84. Параллельное перенесение
§85. Применение параллельного перенесения в теории поверхностей
§86. Выведение параллельного перенесения из внутренней геометрии поверхности
Из топологии: артиновы косы
§87. Доказательство Александера теоремы Титце
§88. Проблема узлов
§89. Группа кос
§90. Определяющие соотношения
§91. Замкнутая коса
§92. Свободное произведение групп
§93. Косы третьего порядка
О дифференциальных уравнениях Монжа. Их отношение к теории дифференциальных уравнений с частными производными первого порядка и к вариационному исчислению
§94. Уравнение Гамильтона
§95. Соответствующие преобразования прикосновения
Введение в теорию элементарных делителей
§96. Линейные подстановки и исчисление матриц
§97. Геометрическое истолкование линейных подстановок
§98. Нормальная форма линейных преобразований
§99. Пары квадратичных форм
Именной и предметный указатель.

Купить книгу Высшая геометрия, Клейн Ф., 2004 .

Купить книгу Высшая геометрия, Клейн Ф., 2004 .
Дата публикации:






Теги: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-22 11:46:22