Геометрия, 10-11 класс, Погорелов А.В., 2009

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Геометрия, 10-11 класс, Погорелов А.В., 2009.

   Стереометрия — это раздел геометрии, в котором изучаются фигуры в пространстве. В стереометрии, так же как и в планиметрии, свойства геометрических фигур устанавливаются путем доказательства соответствующих теорем. При этом отправными являются свойства основных геометрических фигур, выражаемые аксиомами. Основными фигурами в пространстве являются точка, прямая и плоскость.

Геометрия, 10-11 класс, Погорелов А.В., 2009

   Плоскость мы представляем себе как ровную поверхность крышки стола (рис. 1, а). Изображать плоскость будем в виде параллелограмма или в виде произвольной области (рис. 1, б, в). Плоскость, как и прямая, бесконечна. На рисунке мы изображаем только часть плоскости, но представляем ее неограниченно продолженной во все стороны. Плоскости обозначаются греческими буквами а, в, у, ... .
Введение нового геометрического образа — плоскости заставляет расширить систему аксиом. Поэтому мы вводим группу аксиом, которая выражает основные свойства плоскостей в пространстве. Эта группа состоит из следующих трех аксиом:

СОДЕРЖАНИЕ
10 КЛАСС

§ 1. Аксиомы стереометрии и их простейшие следствия
1. Аксиомы стереометрии 3. 2. Существование плоскости, проходящей через данную прямую и данную точку 5. 3. Пересечение прямой с плоскостью 6. 4. Существование плоскости, проходящей через три данные точки 7. 5. Замечание к аксиоме I 8. 6. Разбиение пространства плоскостью на два полупространства 9. Контрольные вопросы 10. Задачи 10.
§ 2. Параллельность прямых и плоскостей
7. Параллельные прямые в пространстве 11. 8. Признак параллельности прямых 13. 9. Признак параллельности прямой и плоскости 14. 10. Признак параллельности плоскостей 15. 11. Существование плоскости, параллельной данной плоскости 16. 12. Свойства параллельных плоскостей 17. 13. Изображение пространственных фигур на плоскости 18. Контрольные вопросы 20. Задачи 20.
§ 3. Перпендикулярность прямых и плоскостей
14. Перпендикулярность прямых в пространстве 25. 15. Признак перпендикулярности прямой и плоскости 26. 16. Построение перпендикулярных прямой и плоскости 27. 17. Свойства перпендикулярных прямой и плоскости 28. 18. Перпендикуляр и наклонная 30. 19. Теорема о трех перпендикулярах 31. 20. Признак перпендикулярности плоскостей 32. 21. Расстояние между скрещивающимися прямыми 33. 22. Применение ортогонального проектирования в техническом черчении 34. Контрольные вопросы 35. Задачи 35.
§ 4. Декартовы координаты и векторы в пространстве
23. Введение декартовых координат в пространстве 42. 24. Расстояние между точками 43. 25. Координаты середины отрезка 44. 26. Преобразование симметрии в пространстве 45. 27. Симметрия в природе и на практике 46. 28. Движение в пространстве 46. 29. Параллельный перенос в пространстве 47. 30. Подобие пространственных фигур 48. 31. Угол между скрещивающимися прямыми 49. 32. Угол между прямой и плоскостью 51. 33. Угол между плоскостями 52. 34. Площадь ортогональной проекции многоугольника 53. 35. Векторы в пространстве 54. 36. Действия над векторами в пространстве 55. 37. Разложение вектора по трем некомпланарным векторам 56. 38. Уравнение плоскости 57. Контрольные вопросы 59. Задачи 60.
11 КЛАСС
§ 5. Многогранники

39. Двугранный угол 66. 40. Трехгранный и многогранный углы 67. 41. Многогранник 68. 42. Призма 69. 43. Изображение призмы и построение ее сечений 70. 44. Прямая призма 71. 45. Параллелепипед 73.
46. Прямоугольный параллелепипед 74. 47. Пирамида 76. 48. Построение пирамиды и ее плоских сечений 76. 49. Усеченная пирамида 77. 50. Правильная пирамида 79. 51. Правильные многогранники 80. Контрольные вопросы 81. Задачи 83.
§ 6. Тела вращения
52. Цилиндр 90. 53. Сечения цилиндра плоскостями 91. 54. Вписанная и описанная призмы 92. 55. Конус 93. 56. Сечения конуса плоскостями 94. 57. Вписанная и описанная пирамиды 95. 58. Шар 96. 59. Сечение шара плоскостью 96. 60. Симметрия шара 97. 61. Касательная плоскость к шару 98. 62. Пересечение двух сфер 99. 63. Вписанные и описанные многогранники 100. 64. О понятии тела и его поверхности в геометрии 101. Контрольные вопросы 102. Задачи 103.
§ 7. Объемы многогранников
65. Понятие объема 108. 66. Объем прямоугольного параллелепипеда 108. 67. Объем наклонного параллелепипеда 110. 68. Объем призмы 111. 69. Равновеликие тела 113. 70. Объем пирамиды 114. 71. Объем усеченной пирамиды 115. 72. Объемы подобных тел 115. Контрольные вопросы 116. Задачи 117.
§ 8. Объемы и поверхности тел вращения
73. Объем цилиндра 121. 74. Объем конуса 121. 75. Объем усеченного конуса 122. 76. Объем шара 123. 77. Объем шарового сегмента и сектора 124. 78. Площадь боковой поверхности цилиндра 125. 79. Площадь боковой поверхности конуса 126. 80. Площадь сферы 127. Контрольные вопросы 128. Задачи 128.
§ 9. Избранные вопросы планиметрии
81. Решение треугольников 132. 82. Вычисление биссектрис и медиан треугольника 134. 83. Формула Герона и другие формулы для площади треугольника 137. 84. Теорема Чевы 139. 85. Теорема Менелая 141. 86. Свойства и признаки вписанных и описанных четырехугольников 143. 87. Углы в окружности 146. 88. Метрические соотношения в окружности 148. 89. О разрешимости задач на построение 149. 90. Геометрические места точек в задачах на построение 150. 91. Геометрические преобразования в задачах на построение 151. 92. Эллипс, гипербола, парабола 153. Контрольные вопросы 157. Задачи 158.
Ответы и указания к задачам 163.
Предметный указатель 172.

Купить книгу Геометрия, 10-11 класс, Погорелов А.В., 2009 .

Купить книгу Геометрия, 10-11 класс, Погорелов А.В., 2009 .
Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-23 06:32:02