Курс математического анализа, Тер-Крикоров А.М., Шабунин М.И., 2001.
Изложение теоретического материала иллюстрируется типовыми примерами. Большое внимание уделено трудным разделам курса математического анализа (равномерная сходимость функциональных рядов и интегралов, зависящих от параметра, равномерная непрерывность функций и т. д.). Для студентов физико-математических и инженерно-физических специальностей ВУЗов с повышенной подготовкой по математике. Может быть использована при самостоятельном изучении курса.
При написании настоящей книги авторы опирались на многолетний опыт чтения курса математического анализа и ведения семинарских занятий в Московском физико-техническом институте. Изложение теоретического материала подкрепляется достаточным числом примеров, помогающих освоению основных идей курса и выработке навыков в решении прикладных задач. Особое внимание уделяется таким традиционно трудным для студентов понятиям, как равномерная непрерывность функции, сходимость несобственных интегралов, равномерная сходимость функциональных рядов и интегралов, зависящих от параметра.
Наряду с традиционными разделами курса математического анализа в книге кратко изложены элементы теории обобщенных функций и простейшие методы получения асимптотических оценок интегралов. Вопросы приближенных вычислений интегралов и сумм рядов в настоящее время обычно входят в курсы вычислительной и прикладной математики и в данной книге не рассматриваются.
Следует отмстить, что основы построения и стиль преподавания математического анализа в МФТИ разработаны большим коллективом преподавателей кафедры высшей математики. Это обстоятельство оказало несомненное влияние на авторов при написании предлагаемой читателю книги, которая может служить учебным пособием для физико-математических и инженерно-физических специальностей ВУЗов с повышенной программой по математике. Книга может оказаться полезной и при самостоятельном изучении курса математического анализа.
ОГЛАВЛЕНИЕ
Предисловие к третьему изданию 3
ГЛАВА I. ВЕЩЕСТВЕННЫЕ ЧИСЛА 5
§ 1. Рациональные числа. Бесконечные десятичные дроби 5
§ 2. Точные грани числовых множеств 15
§ 3. Операции над вещественными числами 20
ГЛАВА II. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ 35
§ 4. Определение предела последовательности. Свойства сходящихся последовательностей 35
§ 5. Бесконечно малые и бесконечно большие последовательности. Арифметические операции над сходящимися последовательностями 45
§ 6. Предел монотонной последовательности 50
§ 7. Подпоследовательности. Частичные пределы 55
§ 8. Критерий Коши сходимости последовательности 57
ГЛАВА III. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ 61
§ 9. Числовые функции 61
§ 10. Предел функции 73
§ 11. Непрерывность функции 86
§ 12. Непрерывность элементарных функций 96
§ 13. Вычисление пределов функций 110
ГЛАВА IV. ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ 123
§ 14. Производная и дифференциал 123
§ 15. Правила дифференцирования 133
§ 16. Производные и дифференциалы высших порядков 143
§ 17. Основные теоремы для дифференцируемых функций 150
§ 18. Формула Тейлора 158
§ 19. Правило Лопиталя 172
§ 20. Исследование функций с помощью производных 176
§ 21. Вектор-функции 194
§ 22. Кривые 200
ГЛАВА V. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 222
§ 23. Пространство Rn 222
§ 24. Предел функции многих переменных 232
§ 25. Непрерывность функции многих переменных 237
§ 26. Дифференцируемость функции многих переменных 241
§ 27. Частные производные и дифференциалы высших порядков 254
§ 28. Неявные функции 259
§ 29. Замена переменных 269
ГЛАВА VI. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 275
§ 30. Определение и свойства неопределенного интеграла. Основные методы интегрирования 275
§ 31. Комплексные числа 284
§ 32. Разложение рациональной функции на простые дроби 295
§ 33. Интегрирование рациональных, иррациональных, тригонометрических и гиперболических функций 302
ГЛАВА VII. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 316
§ 34. Определение и условия существования определенного интеграла 316
§ 35. Свойства определенного интеграла 326
§ 36. Интеграл с переменным верхним пределом. Вычисление определенных интегралов 334
§ 37. Приложения определенного интеграла 343
§ 38. Несобственные интегралы 358
ГЛАВА VIII. ЧИСЛОВЫЕ РЯДЫ 383
§ 39. Определение и свойства сходящихся рядов 383
§ 40. Ряды с неотрицательными членами 388
§ 41. Абсолютно и условно сходящиеся ряды 395
ГЛАВА IX. ФУНКЦИОНАЛЬНЫЕ РЯДЫ 408
§ 42. Равномерная сходимость функциональных последовательностей и рядов 408
§ 43. Степенные ряды 425
§ 44. Ряд Тейлора 434
ГЛАВА X. КРАТНЫЕ ИНТЕГРАЛЫ 446
§ 45. Мера Жордана в Rn 446
§ 46. Определение и свойства кратного интеграла Римана 452
§ 47. Сведение кратных интегралов к повторным 460
§ 48. Формула замены переменных в кратном интеграле 470
§ 49. Несобственные кратные интегралы 486
ГЛАВА XI. КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ 491
§ 50. Криволинейные интегралы 491
§ 51. Формула Грина на плоскости 500
§ 52. Поверхности 510
§ 53. Площадь поверхности 522
§ 54. Поверхностные интегралы 527
ГЛАВА XII. ТЕОРИЯ ПОЛЯ 536
§ 55. Скалярные и векторные поля 536
§ 56. Формула Остроградского-Гаусса 542
§ 57. Формула Стокса 547
ГЛАВА XIII. ЭКСТРЕМУМЫ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ 554
§ 58. Формула Тейлора для функций многих переменных 554
§ 59. Экстремумы функций многих переменных 557
§ 60. Условный экстремум 562
ГЛАВА XIV. РЯДЫ ФУРЬЕ 572
§ 61. Ортогональные системы функций. Ряды Фурье по ортогональным системам 572
§ 62. Лемма Римана 576
§ 63. Формула для частичных сумм тригонометрического ряда Фурье 578
§ 64. Сходимость ряда Фурье в точке 581
§ 65. Почленное дифференцирование и интегрирование ряда Фурье 589
§ 66. Равномерная сходимость ряда Фурье 592
§ 67. Комплекснозначные функции. Ряд Фурье в комплексной форме 594
§ 68. Суммирование ряда Фурье методом средних арифметических 596
§ 69. Теоремы Вейерштрасса о равномерных приближениях непрерывных функций многочленами 598
§ 70. Сходимость ряда Фурье в смысле среднего квадратичного 601
ГЛАВА XV. ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА 616
§ 71. Собственные интегралы, зависящие от параметра 616
§ 72. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла по параметру 618
§ 73. Эйлеровы интегралы 634
§ 74. Интеграл Фурье 639
§ 75. Преобразование Фурье 645
§ 76. Элементы теории обобщенных функций 649
§ 77. Асимптотические оценки интегралов 657
Список литературы 664
Предметный указатель 665
Купить книгу Курс математического анализа, Тер-Крикоров А.М., Шабунин М.И., 2001 .
Купить книгу Курс математического анализа, Тер-Крикоров А.М., Шабунин М.И., 2001 .
Теги: учебник по матанализу :: матанализ :: Тер-Крикоров :: Шабунин
Смотрите также учебники, книги и учебные материалы:
- Математический анализ, Введение в анализ, Виленкин Н.Я., Мордкович А.Г., 1983
- Математика, 2 класс, часть 1, Петерсон Л.Г., 2008
- Математика, 1 класс, часть 2, Моро М.И., Волкова С.И., Степанова С.В., 2003
- Математика, 1 класс, часть 1, Моро М.И., Волкова С.И., Степанова С.В., 2006
- Занимательные задания в обучении математике, Шуба М.Ю., 1994
- Дифференциальные уравнения, Виленкин Н.Я., Доброхотова М.А., Сафонов А.Н., 1984
- Геометрия, 10-11 класс, Погорелов А.В., 2009
- Геометрия, 10-11 класс, Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., 1992