учебник по математике

Краткий курс высшей математики для заочного и дистанционного обучения, часть 3, Филиппов С.И., 2005

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 3, Филиппов С.И., 2005.

   Учебное пособие предназначено для самостоятельной работы студентов второго курса (третий семестр) заочной и дистанционной форм обучения. Часть III содержит необходимый теоретический материал по кратным, криволинейным и поверхностным интегралам, дифференциальным уравнениям и элементам теории векторного поля.

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 3, Филиппов С.И., 2005
Скачать и читать Краткий курс высшей математики для заочного и дистанционного обучения, часть 3, Филиппов С.И., 2005
 

Краткий курс высшей математики для заочного и дистанционного обучения, часть 1, Салимов Р.Б., Филиппов С.И., 2005

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 1, Салимов Р.Б., Филиппов С.И., 2005.

   Учебное пособие предназначено для самостоятельной работы студентов первого курса (первый семестр) заочной и дистанционной форм обучения. Часть I содержит необходимый теоретический материал по темам: векторная и линейная алгебра, аналитическая геометрия, теория пределов.

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 1, Салимов Р.Б., Филиппов С.И., 2005
Скачать и читать Краткий курс высшей математики для заочного и дистанционного обучения, часть 1, Салимов Р.Б., Филиппов С.И., 2005
 

Краткий курс высшей математики для заочного и дистанционного обучения, часть 1, Салимов Р.Б., Филиппов С.И., 2005

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 1, Салимов Р.Б., Филиппов С.И., 2005.

   Учебное пособие предназначено для самостоятельной работы студентов первого курса (первый семестр) заочной и дистанционной форм обучения. Часть I содержит необходимый теоретический материал по темам: векторная и линейная алгебра, аналитическая геометрия, теория пределов.

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 1, Салимов Р.Б., Филиппов С.И., 2005
Скачать и читать Краткий курс высшей математики для заочного и дистанционного обучения, часть 1, Салимов Р.Б., Филиппов С.И., 2005
 

Краткий курс высшей математики для заочного и дистанционного обучения, часть 2, Арасланов Ш.Ф., Филиппов С.И., 2005

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 2, Арасланов Ш.Ф., Филиппов С.И., 2005.

   Учебное пособие предназначено для самостоятельной работы студентов первого курса (второй семестр) заочной и дистанционной форм обучения. Оно содержит необходимый теоретический материал по дифференциальному и интегральному исчислениям.

Краткий курс высшей математики для заочного и дистанционного обучения, Часть 2, Арасланов Ш.Ф.,Филиппов С.И., 2005
Скачать и читать Краткий курс высшей математики для заочного и дистанционного обучения, часть 2, Арасланов Ш.Ф., Филиппов С.И., 2005
 

Курс математического анализа, Часть вторая, Емельянов В.Ф., Барабанов А.И., Прохоров Д.В., 1983

Курс математического анализа, Часть вторая, Емельянов В.Ф., Барабанов А.И., Прохоров Д.В., 1983.

   В книге излагается теория функций двух переменных и, в частности, дифференциальное и интегральное исчисления, включая интеграл Лебега.
Учебное пособие рассчитано на студентов механико-математического и физического факультетов университетов и может быть использовано в качестве учебного пособия студентами пединститутов.

Курс математического анализа, Часть вторая, Емельянов В.Ф., Барабанов А.И., Прохоров Д.В., 1983
Скачать и читать Курс математического анализа, Часть вторая, Емельянов В.Ф., Барабанов А.И., Прохоров Д.В., 1983
 

Математический анализ, Краткий курс в современном изложении, Дороговцев А.Я., 2004

Математический анализ, Краткий курс в современном изложении, Дороговцев А.Я., 2004.

   Книга содержит краткое и вместе с тем достаточно полное по охвату материала изложение современного курса математического анализа. Она рассчитана в первую очередь на студентов университетов и технических вузов и предназначена для первоначального изучения курса. Проведено модернизированное изложение ряда разделов: кратные интегралы, интегралы по многообразиям, формула Стокса и др. Теоретический материал иллюстрируется большим числом упражнений и примеров.
Для студентов ВУЗов, преподавателей математики, инженерно-технических работников.

Математический анализ, Краткий курс в современном изложении, Дороговцев А.Я., 2004
Скачать и читать Математический анализ, Краткий курс в современном изложении, Дороговцев А.Я., 2004
 

Пособие по математике, Александров Б.И., Лурье М.В., 1979

Пособие по математике, Александров Б.И., Лурье М.В., 1979.

   Пособие предназначено для учащихся подготовительных курсов естественных факультетов МГУ и ориентировано на новую программу по математике. Разобрано большое количество задач* предлагавшихся на вступительных экзаменах в МГУ за последние годы. Во второй части пособия помещены задачи для самостоятельных упражнений.

Пособие по математике, Александров Б.И., Лурье М.В., 1979
Скачать и читать Пособие по математике, Александров Б.И., Лурье М.В., 1979
 

Теория вероятностей и математическая статистика, Гмурман В.Е., 2003

Теория вероятностей и математическая статистика, Гмурман В.Е., 2003.

   Книга (8-е изд. 2002г.) содержит в основном весь материал программы по теории вероятностей и математической статистике. Большое внимание уделено статистическим методам обработки экспериментальных данных. В конце каждой главы помешены задачи с ответами.
Предназначается для студентов вузов и лиц, использующих вероятностные и статистические методы при решении практических задач.

Теория вероятностей и математическая статистика, Гмурман В.Е., 2003
Скачать и читать Теория вероятностей и математическая статистика, Гмурман В.Е., 2003
 
Показана страница 194 из 515