математика

Сборник задач по дифференциальным уравнениям и вариационному исчислению, Романко В.К., Агаханов Н.Х., Власов В.В., Коваленко Л.И., 2002

Сборник задач по дифференциальным уравнениям и вариационному исчислению, Романко В.К., Агаханов Н.Х., Власов В.В., Коваленко Л.И., 2002.

Задачник обеспечивает практические занятия по курсу «Дифференциальные уравнения и вариационные исчисления». В начале каждого параграфа приводятся решения типовых задач. Ко всем задачам даны ответы. Для студентов физико-математических, инженерно-физических и экономических специальностей.

Сборник задач по дифференциальным уравнениям и вариационному исчислению, Романко В.К., Агаханов Н.Х., Власов В.В., Коваленко Л.И., 2002
Скачать и читать Сборник задач по дифференциальным уравнениям и вариационному исчислению, Романко В.К., Агаханов Н.Х., Власов В.В., Коваленко Л.И., 2002
 

Дифференциальные уравнения, Ряды, Богатова С.В., Бухенский К.В., Лукьянова Г.С., 2009

Дифференциальные уравнения, Ряды, Богатова С.В., Бухенский К.В., Лукьянова Г.С., 2009.

   Учебное пособие содержит упрощенное изложение разделов общего курса «Высшая математика»: дифференциальные уравнения и ряды. Его можно использовать как конспект лекций при подготовке к экзамену и как задачник по указанным темам. В теоретический материал пособия включены все основные понятия и теоремы, приведены доказательства важных теорем. Подробно рассмотрены алгоритмы решения задач, содержатся примеры. Уровень изложения материала позволит студенту, впервые встретившемуся с данными разделами математики, изучить темы самостоятельно. Проконтролировать свои знания студент сможет с помощью задач для самостоятельной работы, содержащихся в пособии. Работа содержит разделы и задачи повышенной сложности, которые в тексте отмечены звёздочками.
Учебное пособие предназначено для студентов заочного отделения и студентов, обучающихся по ускоренной программе.

Дифференциальные уравнения, Ряды, Богатова С.В., Бухенский К.В., Лукьянова Г.С., 2009
Скачать и читать Дифференциальные уравнения, Ряды, Богатова С.В., Бухенский К.В., Лукьянова Г.С., 2009
 

Дифференциальные уравнения, То решаем, то рисуем, Аносов Д.В., 2010

Дифференциальные уравнения, То решаем, то рисуем, Аносов Д.В., 2010.

   В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других — как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости. Книга не заменяет вузовские учебники, но так как в ней затрагиваются и не освещаемые в них вопросы, а часть других вопросов освещается иначе, то она может заинтересовать и студентов вузов со значительной математической программой.

Дифференциальные уравнения, То решаем, то рисуем, Аносов Д.В., 2010
Скачать и читать Дифференциальные уравнения, То решаем, то рисуем, Аносов Д.В., 2010
 

Группы и их приложения в физике, химии, кристаллографии, Артамонов В.А., Словохотов Ю.Л., 2005

Группы и их приложения в физике, химии, кристаллографии, Артамонов В.А., Словохотов Ю.Л., 2005.

   Систематически изложена теория групп, рассмотрены ее физико-химические приложения. Представлены основные групповые конструкции, теория конечно порожденных абелевых и кристаллографических групп, основы теории представлений конечных групп, линейные группы и их алгебры Ли. Кратко рассмотрены квазикристаллы, ренормгруппа, алгебры Хопфа и топологические группы. Обсуждаются соотношения симметрии в механике, молекулярной спектроскопии, физике твердого тела, а также в теории атомов, ядер и элементарных частиц.
Для студентов естественно-научных специальностей высших учебных заведений. Может быть полезен аспирантам и научным работникам.

Группы и их приложения в физике, химии, кристаллографии, Артамонов В.А., Словохотов Ю.Л., 2005
Скачать и читать Группы и их приложения в физике, химии, кристаллографии, Артамонов В.А., Словохотов Ю.Л., 2005
 

Трансцендентные и алгебраические числа, Гельфонд А.О., 1952

Трансцендентные и алгебраические числа, Гельфонд А.О., 1952.

   Целью настоящей монографии является по только показать современное состояние теории трансцендентных чисел и наложить основные методы этой теории, по и дать представление об историческом ходе развития ее методов и о тех связях, которые существуют между этой теорией и другими проблемами теории чисел.
Так как доказательства основных теорем в теории трансцендентных чисел достаточно громоздки и опираются на большое количество вспомогательных предложений, то каждое такое доказательство предваряется кратким изложенном его схемы, что должно, по нашему мнению, облегчить понимание основных черт соответствующего метода.

Трансцендентные и алгебраические числа, Гельфонд А.О., 1952
Скачать и читать Трансцендентные и алгебраические числа, Гельфонд А.О., 1952
 

Вычислительные методы в теории представлений групп, Климык А.У., Качурик И.И., 1986

Вычислительные методы в теории представлений групп, Климык А.У., Качурик И.И., 1986.

   Монография посвящена прикладным аспектам теории представлений групп Ли, важным для приложений в физике и математике (специальные функции, атомная и ядерная физика, теория элементарных частиц, квантовая химия). Даны в явном виде инфинитезимальные операторы вырожденных представлений компактных и некомпактных групп Ли в различных базисах, построены разложения функций, связанные с представлениями полупростых групп Ли, рассмотрен случай группы де Ситтера SO0 (1, 4).
Рассчитана на научных работников, преподавателей и аспирантов, занимающихся применениями теоретико-группового аппарата к различным задачам физики и математики. Может быть полезна студентам старших курсов физических и математических специальностей.

Вычислительные методы в теории представлений групп, Климык А.У., Качурик И.И., 1986
Скачать и читать Вычислительные методы в теории представлений групп, Климык А.У., Качурик И.И., 1986
 

Введение в математическую логику, Мендельсон Э., 1971

Введение в математическую логику, Мендельсон Э., 1971.

   В книге Э. Мендельсона «Введение в математическую логику» дается доступное для начинающего читателя и достаточно полное изложение основных разделов современной математической логики и многих ее приложений. Наряду с такими разделами, как логика высказываний, исчисление предикатов, формальная арифметика и теория алгоритмов, в ней освещены также теория моделей и аксиоматическая теория множеств, отсутствующие в книге С. К. Клини «Введение в метаматематику», которая до настоящего времени служила наиболее полным пособием по математической логике. Следует однако отметить, что в отличие от книги С. К. Клини в этой книге по существу не затрагиваются интуиционистское и конструктивное направления математической логики.

Введение в математическую логику, Мендельсон Э., 1971
Скачать и читать Введение в математическую логику, Мендельсон Э., 1971
 

Простейшие примеры математических доказательств, Успенский В.А., 2009

Простейшие примеры математических доказательств, Успенский В.А., 2009.

В брошюре доступным неспециалистам языком рассказывается о некоторых из основополагающих принципов, на которых строится наука математика: чем понятие математического доказательства отличается от понятия доказательства, принятого в других науках и в повседневной жизни, какие простейшие приёмы доказательства используются в математике, как менялось со временем представление о «правильном» доказательстве, что такое аксиоматический метод, в чём разница между истинностью и доказуемостью. Для очень широкого круга читателей, начиная со школьников старших классов.

Простейшие примеры математических доказательств, Успенский В.А., 2009
Скачать и читать Простейшие примеры математических доказательств, Успенский В.А., 2009
 
Показана страница 290 из 1550