интегралы

Методы качественного анализа в динамике твердого тела, Козлов В.В., 2019

Методы качественного анализа в динамике твердого тела, Козлов В.В., 2019.

В монографии излагаются современные математические методы качественного анализа динамических систем применительно к классической задаче о вращении твердого тела с неподвижной точкой. Рассмотренные задачи группируются вокруг трех связанных друг с другом проблем: существование однозначных аналитических интегралов, периодические решения, малые знаменатели.
Эти проблемы нанимают одно из центральных мест в классической механике. Первое издание вышло в 1980 г. и давно стало библиографической редкостью. В новое издание вошла работа В.В. Козлова, посвященная исследованию уравнений Дуффинга.

Методы качественного анализа в динамике твердого тела, Козлов В.В., 2019
Скачать и читать Методы качественного анализа в динамике твердого тела, Козлов В.В., 2019
 

Методы решения интегральных уравнений, Теория и приложения, Довгий С.А., Лифанов И.К., 2002

Методы решения интегральных уравнений, Теория и приложения, Довгий С.А., Лифанов И.К., 2002.

Книга содержит основные сведения о современном состоянии методов численного решения интегральных уравнений, необходимые для первоначального знакомства с предметом. Излагаются основы вычисления определенных, сингулярных и гиперсингулярных одномерных и двумерных интегралов, а также численного решения уравнений с ними. Большое внимание уделено гиперсингулярным интегральным уравнениям, к которым сводится задача Неймана для уравнения Лапласа и Гельмгольца. Дано приложение рассматриваемых методов к численному решению стационарных и нестационарных, линейных и нелинейных, плоских и пространственных задач аэродинамики, включая обтекание плохообтекаемых тел (т.е. тел, имеющих острые кромки, углы). Приводится новый способ изложения элементов теории потенциала. Дано много примеров расчетов, помогающих усвоению материала.

Методы решения интегральных уравнений, Теория и приложения, Довгий С.А., Лифанов И.К., 2002
Скачать и читать Методы решения интегральных уравнений, Теория и приложения, Довгий С.А., Лифанов И.К., 2002
 

Производные и интегралы, Огами Такэхико, 2020

Производные и интегралы, Огами Такэхико, 2020.

Если раньше дифференциальные и интегральные исчисления были только уделом математиков, сегодня эту тему уже проходят в старших классах школы. Однако те, кто в дальнейшем не планирует связать свою жизнь с математикой, с трудом представляют, в какой сфере можно применить эти знания. В этой книге производные и интегралы рассматриваются не только в историческом, но и в практическом контексте. Читатель узнает о том, какую роль они сыграли в наблюдении за звездами, какая функция выражает наклон, какова связь между интегрированием и разделением земельных участков в древности. Иллюстрации помогают представить математические задачи образно, а любопытные факты из жизни ученых удачно дополняют изложение теории. Издание предназначено для учащихся старших классов, студентов технических вузов и всех, кто интересуется историей и теорией математики.

Производные и интегралы, Огами Такэхико, 2020
Скачать и читать Производные и интегралы, Огами Такэхико, 2020
 

Функциональный анализ и интегральные уравнения, учебник, Антоневич А.Б., Радыно Я.В., 2006

Функциональный анализ и интегральные уравнения, Учебник, Антоневич А.Б., Радыно Я.В., 2006.

Учебник по курсу «Функциональный анализ и интегральные уравнения» написан в соответствии с программой для математических специальностей университетов. Содержит основные понятия и теоремы теории меры и интеграла Лебега, метрических пространств, нормированных пространств и линейных операторов в них, топологических векторных пространств и теории обобщенных функций.

Функциональный анализ и интегральные уравнения, Учебник, Антоневич А.Б., Радыно Я.В., 2006
Скачать и читать Функциональный анализ и интегральные уравнения, учебник, Антоневич А.Б., Радыно Я.В., 2006
 

Курс дифференциального и интегрального исчисления, в 3 томах, том 2, Фихтенгольц Г.М., 2003

Курс дифференциального и интегрального исчисления, в 3 томах, том II, Фихтенгольц Г.М., 2003.

Второй том «Курса...» посвящен теории интеграла от функции одной вещественной переменной и теории рядов и предназначен, прежде всего, для студентов первых двух курсов негуманитарных вузов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра, и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера-Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др. Являясь одним из лучших систематических учебников по интегральному исчислению и, одновременно, уникальной коллекцией конкретных фактов, связанных с рядами и интегралами, данная книга, безусловно, будет полезна как учащимся, так и преподавателям высшей математики, а также специалистам различных профилей, использующим математику в своей работе, в том числе, математикам, физикам и инженерам.
Первое издание вышло в 1948 г.

Скачать и читать Курс дифференциального и интегрального исчисления, в 3 томах, том 2, Фихтенгольц Г.М., 2003
 

Курс дифференциального и интегрального исчисления, в 3 томах, том 1, Фихтенгольц Г.М., 2003

Курс дифференциального и интегрального исчисления, в 3 томах, том I, Фихтенгольц Г.М., 2003.

Фундаментальный учебник по математического анализу, выдержавший множество изданий и переведенный на ряд иностранных языков, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой — простым языком, подробными пояснениями и многочисленными примерами, иллюстрирующими теорию.
«Курс... » предназначен для студентов университетов, педагогических и технических вузов и уже в течение длительного времени используется в различных учебных заведениях в качестве одного из основных учебных пособий. Он позволяет учащемуся не только овладеть теоретическим материалом, но и получить наиболее важные практические навыки. «Курс...» высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
Первое издание вышло в 1948 г.

Скачать и читать Курс дифференциального и интегрального исчисления, в 3 томах, том 1, Фихтенгольц Г.М., 2003
 

Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987

Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987.

Учебник представляет собой второй том курса высшей математики и является продолжением книги Мантурова О В , Матвеева Н. М «Курс высшей математики Линейная алгебра Аналитическая геометрия Дифференциальное исчисление функций одной переменной» (М., 1986) Он предназначен для студентов-заочников инженерно-технических специальностей втузов и написан в соответствии с программой по математике для указанных специальностей Большое внимание уделено разбору примеров и задач. Имеются задачи для самостоятельного решения.

Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987
Скачать и читать Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987
 

Интегральное исчисление, том 3, Эйлер Л., 1958

Интегральное исчисление, Том 3, Эйлер Л., 1958.

В первом томе излагаются основные начала метода интегрирования, вплоть до интегрирования дифференциальных уравнений первого порядка. Во втором томе представлен метод нахождения функций одного переменного по данному соотношению между дифференциалами второго или высшего порядков. В третьем томе излагается метод определения функций двух и многих переменных по данному соотношению между дифференциалами любого порядка с приложением о вариационном исчислении и с дополнением, содержащим изложение некоторых особых случаев интегрирования дифференциальных уравнений.

Интегральное исчисление, Том 3, Эйлер Л., 1958
Скачать и читать Интегральное исчисление, том 3, Эйлер Л., 1958
 
Показана страница 2 из 4