Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018.
Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. На примерах из физики, механики и техники показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Некоторые замечания о задачах вариационного исчисления.
Приведенные выше примеры иллюстрируют тот круг задач, которые изучает вариационное исчисление. Можно сказать, что задача вариационного исчисления (или просто вариационная задача) — это задача поиска экстремума функционала, заданного на некотором множестве М функций, удовлетворяющих определенным ограничениям. К вариационным задачам также относят задачи поиска точек в области определения функционала, где выполняется необходимое условие экстремума функционала, т. е. первая вариация функционала обращается в нуль (такие точки называют стационарными точками функционала).
В вариационном исчислении трудность при нахождении экстремума может возникнуть вследствие того, что область определения рассматриваемого функционала не является замкнутым множеством. В этом случае задача может не иметь решения. Такая трудность, естественно, не исключается и в конечномерном случае, когда необходимо найти экстремум функции многих переменных. Но в бесконечномерном случае, когда область определения функционала есть бесконечномерное линейное пространство, условие замкнутости множества проверить гораздо труднее. Впрочем, вариационная задача может не иметь решения даже в том случае, когда область определения функционала является замкнутым множеством. В бесконечномерном нормированном пространстве не для всякого замкнутого ограниченного множества можно утверждать, что функция, непрерывная на этом множестве, ограничена и достигает максимального и минимального значений.
ОГЛАВЛЕНИЕ.
Предисловие.
Основные обозначения.
ЧАСТЬ I. Классическое вариационное исчисление.
1. ОСНОВНЫЕ ПОНЯТИЯ.
1.1. Задачи, приводящие к вариационным проблемам.
1.2. Основные определения.
1.3. Основные леммы вариационного исчисления.
1.4. Некоторые замечания о задачах вариационного исчисления.
Вопросы и задачи.
2. ВАРИАЦИОННЫЕ ЗАДАЧИ С ФИКСИРОВАННЫМИ ГРАНИЦАМИ.
2.1. Простейшая задача вариационного исчисления.
2.2. Функционалы от нескольких функций.
2.3. Функционалы с производными высшего порядка.
2.4. Функционалы от функций многих переменных.
2.5. Канонический вид уравнений Эйлера.
2.6. Инвариантность формы представления уравнения Эйлера.
2.7. Простейшая задача в параметрической форме.
2.8. Принцип Гамильтона. Интеграл энергии.
Вопросы и задачи.
3. ВАРИАЦИОННЫЕ ЗАДАЧИ С ПОДВИЖНЫМИ ГРАНИЦАМИ.
3.1. Задача с подвижными концами.
3.2. Задача с подвижными границами.
3.3. Экстремали с угловыми точками.
3.4. Задача с подвижными границами в пространстве.
3.5. Задачи с односторонними вариациями.
Вопросы и задачи.
4. ЗАДАЧИ НА УСЛОВНЫЙ ЭКСТРЕМУМ.
4.1. Основные типы задач на условный экстремум.
4.2. Необходимые условия в задаче Лагранжа.
4.3. Необходимые условия в изопериметрической задаче.
4.4. Примеры задач на условный экстремум.
4.5. Принцип взаимности а изопериметрических задачах.
4.6. Задача Вольца и задача Майера.
Вопросы и задачи.
5. ДОСТАТОЧНЫЕ УСЛОВИЯ ЭКСТРЕМУМА.
5.1. Слабый экстремум.
5.2. Условие Якоби.
5.3. Инвариантный интеграл Гильберта.
5.4. Сильный экстремум.
Вопросы и задачи.
ЧАСТЬ II. Оптимальное управление.
6. ВАРИАЦИОННЫЕ МЕТОДЫ В ОПТИМАЛЬНОМ УПРАВЛЕНИИ.
6.1. Постановка задач оптимального управления.
6.2. Задача Лагранжа в форме Понтрягина.
6.3. Некоторые задачи с ограничениями в классическом вариационном исчислении.
6.4. Линейные задачи оптимального управления.
6.5. Обсуждение методов вариационного исчисления.
Вопросы и задачи.
7. ПРИНЦИП МАКСИМУМА.
7.1. Автономная система управления. Формулировка принципа максимума.
7.2. Обсуждение принципа максимума.
7.3. Задача быстродействия.
7.4. Линейная задача оптимального быстродействия.
7.5. Задача синтеза управления.
7.6. Задача с подвижными концами.
7.7. Неавтономные системы.
7.8. Понятие особого управления.
Вопросы и задачи.
8. МЕТОД ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ.
8.1. Принцип оптимальности.
8.2. Уравнение Веллмана.
8.3. Уравнение Веллмана в задаче быстродействия.
8.4. Связь метода динамического программировании с принципом максимума.
8.5. Оптимальная стабилизация.
Вопросы и задачи.
ЧАСТЬ III. Прямые методы вариационного исчисления.
9. ФОРМУЛИРОВКА ВАРИАЦИОННЫХ ЗАДАЧ.
9.1. Операторное уравнение.
9.2. Вариационное уравнение.
9.3. Примеры построения функционала по вариационному уравнению.
9.4. Исследование выпуклости функционала.
Вопросы и задачи.
10. МЕТОДЫ РЕШЕНИЯ ВАРИАЦИОННЫХ ЗАДАЧ.
10.1. Минимизирующие последовательности.
10.2. Методы приближенного решения вариационных задач.
10.3. Собственные значения симметрического оператора.
10.4. Приближенное решение задачи на собственные значения.
Вопросы и задачи.
11. ДВОЙСТВЕННЫЕ ВАРИАЦИОННЫЕ ЗАДАЧИ.
11.1. Альтернативные функционалы.
11.2. Построение альтернативного функционала.
11.3. Оценка погрешности приближенного решения.
Вопросы и задачи.
ЧАСТЬ IV. Приложения вариационных методов.
12. ПРИНЦИП ГАМИЛЬТОНА.
13. КОЛЕБАНИЯ СТРУНЫ.
14. КОЛЕБАНИЯ МЕМБРАНЫ.
15. УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ.
16. ЗАДАЧА ЧАПЛЫГИНА.
17. АЭРОДИНАМИЧЕСКАЯ ЗАДАЧА НЬЮТОНА.
18. ЗАДАЧА О ПРОДОЛЬНОМ ИЗГИБЕ УПРУГОГО СТЕРЖНЯ.
18.1. Действие потенциальной силы.
18.2. Действие следящей силы.
18.3. Динамический подход.
19. ВАРИАЦИОННЫЕ ПРИНЦИПЫ ЛАГРАНЖА, РЕЙССНЕРА И КАСТИЛЬЯНО.
20. ВАРИАЦИОННЫЕ ПРИНЦИПЫ ТЕРМОУПРУГОСТИ.
21. ДВУСТОРОННИЕ ОЦЕНКИ В ТЕПЛОПРОВОДНОСТИ.
Рекомендуемая литература.
Предметный указатель.
Купить .
Теги: учебник по математике :: математика :: Ванько :: Ермошина :: Кувыркин
Смотрите также учебники, книги и учебные материалы:
- Условные обозначения по системе Брайля при обучении математике и языку, Башкирова И.Л., Гордейко В.В., 2010
- Считаем без ошибок, для начальной школы, Берестова Е.В., Марченко И.С., 2012
- Оптимальное управление и вариационное исчисление, Зеликин М.И., 2004
- Алгебра, 7 класс, часть 1, учебник для учащихся общеобразовательных учреждений, Мордкович А.Г., Николаев Н.П., 2009
- Аналитическая механика управляемой системы, Новоселов В.С., Королев В.С., 2005
- Специальные разделы теории управления, Оптимальное управление динамическими системами, Громов Ю.Ю., Земской Н.А., Лагутин А.В., Иванова О.Г., Тютюнник В.М., 2004
- Оптимальное управление в примерах и задачах, Сотсков А.И., Колесник Г.В., 2002
- Оптимальное управление дифференциальными и функциональными уравнениями, Варга Д., 1977