Начальный курс алгебраической топологии, Коснёвски Чес

Начальный курс алгебраической топологии, Коснёвски Чес.
 
   Вводный курс алгебраической топологии, написанный английским математиком. Изложение сопровождается большим количеством примеров и рисунков, дано около 350 упражнений для самостоятельной проработки.
Для математиков различных специальностей, аспирантов и студентов, желающих познакомиться с основными понятиями алгебраической топологии.

Начальный курс алгебраической топологии, Коснёвски Чес


СВЯЗНЫЕ ПРОСТРАНСТВА.
Интуитивно, пространство X связно, если оно состоит из «одного куска», но как топологически истолковать «кусок»? Разумно потребовать, чтобы открытые и замкнутые подмножества «куска» были соответственно открытыми и замкнутыми во всем пространстве X. Тогда по лемме 4.4 нужно ожидать, что «кусок» открыт и замкнут в X. Это приводит к следующему определению.

9.1. Определение. Топологическое пространство X называется связным, если единственными подмножествами X, открытыми и замкнутыми одновременно, являются 0 и X. Подмножество пространства X связно, если оно связно как пространство о индуцированной топологией.

Равносильное определение связности X состоит в том, что X не является объединением двух непересекаю-щихся непустых открытых множеств. Этот факт составляет содержание следующей теоремы.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Начальный курс алгебраической топологии, Коснёвски Чес - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-04 17:58:58