Курс арифметики, Серр Ж.П., 1972

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Курс арифметики, Серр Ж.П., 1972.

   Современный университетский учебник повышенного типа по теории чисел. Сжатое, но весьма содержательное изложение ведется с позиции современной алгебры; развиваются теория конечных голей, теория р-адических чисел, локальная теория квадратичных форм, начальные сведения из теории L-рядов с теоремой Дирихле о прогрессии, элементы теории модулярных форм.

Курс арифметики, Серр Ж.П., 1972

Натуральная плотность.
Понятие плотности, используемое в этом параграфе, есть понятие «аналитическое» (или плотность «по Дирихле»). Несмотря на достаточную сложность этого понятия, оно удобно в применениях.

Имеется другое понятие, понятие «натуральной» плотности: подмножество А множества Р имеет в качестве натуральной плотности число 6, если отношение стремится к k при n → ∞.

Можно показать, что если А имеет натуральную плотность k, то аналитическая плотность множества А существует и равна k. Наоборот, существуют множества, имеющие аналитическую плотность, но не имеющие натуральной плотности. Таким, например, является множество Р1 простых чисел, первая цифра которых (в десятичной системе) равна 1: легко видеть, используя теорему о простых числах, что Р1 не имеет натуральной плотности, но, с другой стороны, Бомбьери сообщил мне доказательство того, что аналитическая плотность множества Р1 существует (она равна log10 2 = 0,3010300.. .).

ОГЛАВЛЕНИЕ
Предисловие редактора перевода
Предисловие
Часть первая АЛГЕБРАИЧЕСКИЕ МЕТОДЫ
Глава I. Конечные поля
§1. Общие положения
§2. Уравнения над конечным полем
§3. Квадратичный закон взаимности
Приложение
Глава II. р-адические поля
§1. Кольцо Zp и поле Qp
§2. p-адические уравнения
§3. Мультипликативная группа поля Qp
Глава III. Символ Гильберта
§I. Локальные свойства
§2. Глобальные свойства
Глава IV. Квадратичные формы над Qp и над Q
§1. Квадратичные формы
§2. Квадратичные формы над Qp
§3. Квадратичные формы над Q
Приложение
Глава V. Целые квадратичные формы с дискриминантом ±1
§1. Предварительные сведения
§2. Формулировки результатов
§3. Доказательства
Часть вторая АНАЛИТИЧЕСКИЕ МЕТОДЫ
Глава VI. Теорема об арифметической прогрессии
§1. Характеры конечных абелевых групп
§2. Ряды Дирихле
§3. Дзета-функция и L-функции
§4. Плотность и теорема Дирихле
Глава VII. Модулярные формы
§1. Модулярная группа
§2. Модулярные функции
§3. Пространство модулярных форм
§4. Разложения в бесконечные ряды
§5. Операторы Гекке
§6. Тэта-функции
Литература
Указатель обозначений
Предметный указатель
Именной указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Курс арифметики, Серр Ж.П., 1972 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-25 17:12:02