Алгебра и начала математического анализа, 10 класс, Колягин Ю.М., 2009

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Название: Алгебра и начала математического анализа. 10 класс.

Автор: Колягин Ю.М.
2009

   В учебнике представлен в целостном виде раздел по тригонометрии. Много внимания уделяется алгебраическим, показательным, логарифмическим и тригонометрическим примерам и задачам различного уровня сложности для самостоятельного решения.
Разделы «Производная» и «Интеграл» изложены в учебнике для 11-го класса.

Алгебра и начала математического анализа. 10 класс. Колягин Ю.М. 2009

   Данный учебник является первой частью курса «Алгебра и начала математического анализа» для 10-11-го классов средних общеобразовательных учреждений различного типа, в которых на изучение математики отводится 4-5 часов в неделю.
В новом учебнике изложены элементы теории действительного числа, представленного в виде бесконечной десятичной дроби. В целостном виде также представлен раздел тригонометрии, начиная с определения синуса, косинуса, тангенса и котангенса угла и кончая решением тригонометрических неравенств и изучением обратных тригонометрических функций. Широко представлены разные типы тригонометрических уравнений и методы их решения (уравнения, сводящиеся к алгебраическим; линейные уравнения относительно sin х и cos x; уравнения, содержащие корни и модули; метод разложения на множители, метод замены неизвестного, метод оценки левой и правой частей уравнения). Включена глава, в которой изложены основные методы решения систем уравнений (рациональных, иррациональных, показательных, логарифмических и др.), приведены примеры решения текстовых задач с помощью систем уравнений. Кроме того, отдельная глава посвящена изучению степенной функции, где рассматриваются вопросы, связанные с понятиями обратной функции, равносильности и следствия. В каждой главе учебника имеется краткая историческая справка.

ОГЛАВЛЕНИЕ
Предисловие 3
Глава I. Действительные числа. Степень с действительным показателем
§ 1. Рациональные числа 5
§ 2. Бесконечно убывающая геометрическая прогрессия 8
§ 3. Действительные числа 15
§ 4. Арифметический корень натуральной степени 18
§ 5. Степень с рациональным показателем 25
§ 6. Степень с действительным показателем 32
Упражнения к главе I 36
Историческая справка 40
Глава II. Показательная функция
§ 7. Показательная функция, ее свойства и график 43
§ 8. Показательные уравнения и неравенства 51
Упражнения к главе II 56
Историческая справка 59
Глава III. Степенная функция
§ 9. Степенная функция, ее свойства и график 60
§ 10. Взаимно обратные функции 66
§ 11. Равносильные уравнения и неравенства 71
§ 12. Иррациональные уравнения 77
§ 13. Иррациональные неравенства 81
Упражнения к главе III 88
Историческая справка 91
Глава IV. Логарифмическая функция
§ 14. Логарифмы 92
§ 15. Свойства логарифмов 96
§ 16. Десятичные и натуральные логарифмы. Формула перехода 100
§ 17. Логарифмическая функция, ее свойства и график 105
§ 18. Логарифмические уравнения 111
§ 19. Логарифмические неравенства 117
Упражнения к главе IV 123
Историческая справка 128
Глава V. Системы уравнений
§ 20. Способ подстановки 131
§ 21. Способ сложения 136
§ 22. Решение систем уравнений различными способами 141
§ 23. Решение задач с помощью систем уравнений 154
Упражнения к главе V 160
Историческая справка 164
Глава VI. Тригонометрические формулы
§ 24. Радианная мера угла 165
§ 25. Поворот точки вокруг начала координат 168
§ 26. Определение синуса, косинуса и тангенса угла 174
§ 27. Знаки синуса, косинуса и тангенса угла 180
§ 28. Зависимость между синусом, косинусом и тангенсом одного и того же угла 184
§ 29. Тригонометрические тождества 188
§ 30. Синус, косинус, тангенс углов а и -а 190
§ 31. Формулы сложения 192
§ 32. Синус, косинус и тангенс двойного угла 197
§ 33. Синус, косинус и тангенс половинного угла 201
§ 34. Формулы приведения 205
§ 35. Сумма и разность синусов, сумма и разность косинусов 211
§ 36. Произведение синусов и косинусов 215
Упражнения к главе VI 216
Историческая справка 220
Глава VII. Тригонометрические уравнения
§ 37. Уравнение cos х = а 223
§ 38. Уравнение sin х = а 232
§ 39. Уравнение tg х = а 243
§ 40. Уравнение ctg x = a 251
§ 41. Уравнения, сводящиеся к квадратным 256
§ 42. Уравнения, однородные относительно sin x и cos x 260
§ 43. Уравнение, линейное относительно sin x и cos x 262
§ 44. Решение уравнений методом замены неизвестного 266
§ 45. Решение уравнений методом разложения на множители 270
§ 46. Различные приемы решения тригонометрических уравнений 274
§ 47. Уравнения, содержащие корни и модули 278
§ 48. Системы тригонометрических уравнений 281
§ 49. Появление посторонних корней и потеря корней тригонометрического уравнения 285
Упражнения к главе VII 292
Историческая справка 296
Глава VIII. Тригонометрические функции
§ 50. Периодичность тригонометрических функций 297
§ 51. Функция у = sin х9 ее свойства и график 301
§ 52. Функция у = cos x9 ее свойства и график 309
§ 53. Функции у - tg х и у = ctg xy их свойства и графики 315
§ 54. Тригонометрические неравенства 322
§ 55. Обратные тригонометрические функции 330
Упражнения к главе VIII 334
Историческая справка 336
Ответы 339
Приложение 363

Купить.
Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-04 18:16:40