машинное обучение

Шаблоны и практика глубокого обучения, Ферлитш Э., 2022

Шаблоны и практика глубокого обучения, Ферлитш Э., 2022.
 
В книге рассматриваются актуальные примеры создания приложений глубокого обучения с учетом десятилетнего опыта работы автора в этой области. Вы сэкономите часы проб и ошибок, воспользовавшись представленными здесь шаблонами и приемами. Проверенные методики, образцы исходного кода и блестящий стиль повествования позволят с увлечением освоить даже непростые навыки. По мере чтения вы получите советы по развертыванию, тестированию и техническому со- провождению ваших проектов. Издание предназначено для инженеров машинного обучения, знакомых с Python и глубоким обучением.

Шаблоны и практика глубокого обучения, Ферлитш Э., 2022
Скачать и читать Шаблоны и практика глубокого обучения, Ферлитш Э., 2022
 

Создание приложений машинного обучения, От идеи к продукту, Амейзен Э., 2022

Создание приложений машинного обучения, От идеи к продукту, Амейзен Э., 2022.
 
Освойте ключевые навыки проектирования, разработки и развертывания приложений на базе машинного обучения (МО)! Пошаговое руководство по созданию МО-приложений с упором на практику: для специалистов по обработке данных, разработчиков программного обеспечения и продакт-менеджеров. Читая эту книгу, вы шаг за шагом создадите реальное практическое приложение — от идеи до внедрения. В вашем распоряжении примеры кодов, иллюстрации, скриншоты и интервью с ведущими специалистами в отрасли. Вы научитесь планировать и измерять успех МО-проектов, разберетесь, как построить рабочую модель, освоите способы ее итеративной доработки. И, наконец, познакомитесь со стратегиями развертывания и мониторинга.

Создание приложений машинного обучения, От идеи к продукту, Амейзен Э., 2022
Скачать и читать Создание приложений машинного обучения, От идеи к продукту, Амейзен Э., 2022
 

Программируем с PyTorch, Создание приложений глубокого обучения, Пойнтер Я., 2020

Программируем с PyTorch, Создание приложений глубокого обучения, Пойнтер Я., 2020.
 
PyTorch — это фреймворк от Facebook с открытым исходным кодом. Узнайте, как использовать его для создания собственных нейронных сетей. Ян Пойнтер поможет разобраться, как настроить PyTorch в облачной среде, как создавать нейронные архитектуры, облегчающие работу с изображениями, звуком и текстом. Книга охватывает важнейшие концепции применения переноса обучения, модели отладки и использования библиотеки PyTorch.

Программируем с PyTorch, Создание приложений глубокого обучения, Пойнтер Я., 2020
Скачать и читать Программируем с PyTorch, Создание приложений глубокого обучения, Пойнтер Я., 2020
 

Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020

Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020.
 
Эта книга рассчитана на читателей двух категорий. Первая, ощутимо боль­шая, категория — это специалисты по анализу и обработке данных, которым по долгу службы приходится работать с временными рядами, но делают они это не очень часто. Это могут быть как ветераны отрасли, так и начинающие ана­литики. Опытным специалистам материал первых глав покажется знакомым, но это не значит, что им можно пренебречь, — здесь описаны самые современные методы обработки данных и рассмотрены важные особенности управления вре­менными рядами. Аналитикам с небольшим рабочим опытом желательно прора­ботать все без исключения главы книги предельно внимательно, несмотря на их тематическую независимость друг от друга. Вторая категория читателей — руководители отделов по обработке и анализу данных в компаниях с интенсивным внутренним сбором информации. Если вы относитесь к этой группе читателей, то должны быть в курсе технологических решений, применяемых для обработки временных рядов, хотя вам и не прихо­дится заниматься программированием самостоятельно. Для вас эта книга будет полезна тем, что обозначит область применения временных рядов в существую­щих или создаваемых заново алгоритмах сбора и анализа данных. Назначение этой книги — помочь вам разобраться в технологиях, призванных упростить об­ работку существующих ресурсов данных.

Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020
Скачать и читать Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020
 

Практический анализ временных рядов, Прогнозирование со статистикой и машинное обучение, Нильсен Э., 2021

Практический анализ временных рядов, Прогнозирование со статистикой и машинное обучение, Нильсен Э., 2021.
 
Эта книга рассчитана на читателей двух категорий. Первая, ощутимо боль­шая, категория — это специалисты по анализу и обработке данных, которым по долгу службы приходится работать с временными рядами, но делают они это не очень часто. Это могут быть как ветераны отрасли, так и начинающие ана­литики. Опытным специалистам материал первых глав покажется знакомым, но это не значит, что им можно пренебречь, — здесь описаны самые современные методы обработки данных и рассмотрены важные особенности управления вре­менными рядами. Аналитикам с небольшим рабочим опытом желательно прора­ботать все без исключения главы книги предельно внимательно, несмотря на их тематическую независимость друг от друга. Вторая категория читателей — руководители отделов по обработке и анализу данных в компаниях с интенсивным внутренним сбором информации. Если вы относитесь к этой группе читателей, то должны быть в курсе технологических решений, применяемых для обработки временных рядов, хотя вам и не прихо­дится заниматься программированием самостоятельно. Для вас эта книга будет полезна тем, что обозначит область применения временных рядов в существую­щих или создаваемых заново алгоритмах сбора и анализа данных. Назначение этой книги — помочь вам разобраться в технологиях, призванных упростить об­ работку существующих ресурсов данных.

Практический анализ временных рядов, Прогнозирование со статистикой и машинное обучение, Нильсен Э., 2021
Скачать и читать Практический анализ временных рядов, Прогнозирование со статистикой и машинное обучение, Нильсен Э., 2021
 

Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021

Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021.
 
Книга представляет собой увлекательное, нетехническое введение в такие важные понятия искусственного интеллекта (ИИ), как машинное обучение, глубокое обучение, обработка естественного языка, робототехника и многое другое. Проведено знакомство с историей и основными понятиями ИИ. Раскрыто значение данных как "топлива" для ИИ. Рассмотрены традиционные и продвинутые статистические методы машинного обучения, алгоритмы нейронных сетей для глубокого обучения, сферы применения разговорных роботов (чат-ботов), методы роботизации производственных процессов, технологии обработки естественного языка. Рассказано о применении языка Python и платформ TensorFlow и PyTorch при внедрении проектов ИИ. Освещены современные тренды ИИ: автономное вождение, милитаризация, технологическая безработица, изыскание новых лекарственных препаратов и другие.

Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021
Скачать и читать Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021
 

Машинное обучение на R, Экспертные техники для прогностического анализа, Ланц Б., 2020

Машинное обучение на R, Экспертные техники для прогностического анализа, Ланц Б., 2020.
 
Книга предназначена для тех, кто рассчитывает использовать данные в конкретной области. Возможно, вы уже немного знакомы с машинным обучением, но никогда не работали с языком R; или, наоборот, немного знаете об R, но почти не знаете о машинном обучении. В любом случае эта книга поможет вам быстро начать работу. Было бы полезно немного освежить в памяти основные понятия математики и программирования, но никакого предварительного опыта не потребуется. Вам нужно лишь желание учиться.

Машинное обучение на R, Экспертные техники для прогностического анализа, Ланц Б., 2020
Скачать и читать Машинное обучение на R, Экспертные техники для прогностического анализа, Ланц Б., 2020
 

Машинное обучение для детей, Практическое введение в искусственный интеллект, Лейн Д., 2023

Машинное обучение для детей, Практическое введение в искусственный интеллект, Лейн Д., 2023.
 
Книга знакомит школьников с машинным обучением через выполнение 13 практических проектов в доступной образовательной онлайн-среде с применением языка визуального программирования Scratch. Все проекты в книге сопровождаются подробными пошаговыми инструкциями, доступными для любого новичка.

Машинное обучение для детей, Практическое введение в искусственный интеллект, Лейн Д., 2023
Скачать и читать Машинное обучение для детей, Практическое введение в искусственный интеллект, Лейн Д., 2023
 
Показана страница 1 из 3