Дифференциальные уравнения, Часть 1, Аксенов Л.П., 2024.
Предлагаемый методический комплекс состоит из четырех комплектов. Первые два содержат изложение курса математического анализа, в третьем излагается теория обыкновенных дифференциальных уравнений, в четвертом — теория функций комплексной переменной.
Учебник рассчитан на студентов высших технических учебных заведений. Он составлен на основе курса лекций, читаемых автором в Санкт-Петербургском государственном политехническом университете.
Основанием для написания учебника послужило желание дать нс слишком объемное, недостаточное по строгости, глубине и доходчивости изложение основ упомянутых выше разделов курса высшей математики.
Задача Коши.
Задача Коши для дифференциального уравнения y' = f(х,у) состоит в следующем: среди всех решений этого уравнения найти решение вида у = φ(х), х € (а, b), которое удовлетворяет наперед заданному условию: у = y0 при x = x0, где числа х0 и такие, что точка (х0, у0) € (Z)); х0 € (а, b).
Геометрически задача Коши означает: среди всех интегральных кривых дифференциального уравнения у' = f(х,у) найти ту, которая проходит через заданную точку (х0,y0) € (Z)).
СОДЕРЖАНИЕ.
Предисловие к циклу учебников по высшей математике.
Предисловие.
Введение.
Глава 1. Дифференциальные уравнения первого порядка, разрешенные относительно производной.
§1. Основные понятия и определения.
§2. Существование решения задачи Коши.
§3. Единственность решения задачи Коши.
§4. Общее, частное и особое решения уравнения y = f(x,y).
§5. Дифференциальные уравнения первого порядка в симметричной форме.
§6. Общий интеграл уравнения в симметричной форме.
§7. Уравнение в полных дифференциалах.
§8. Интегрирующий множитель.
§9. Уравнения с разделяющимися переменными.
§10. Линейные уравнения первого порядка.
§11. Уравнение Бернулли.
§12. Однородные уравнения.
§13. Простейшие уравнения, приводящиеся к однородному.
Глава 2. Дифференциальные уравнения первого порядка, не разрешенные относительно производной.
§1. Основные понятия и определения.
§2. Метод введения параметра.
§3. Примеры и задачи к главе 2.
§4. Огибающая и дискриминантная кривая однопараметрического семейства плоских кривых.
§5. Особое решение обыкновенного дифференциального уравнения как огибающая семейства интегральных кривых.
Купить .
Теги: учебник по математике :: математика :: Аксенов
Смотрите также учебники, книги и учебные материалы:
- Игралочка, Математика для детей 4-5 лет, Часть 2, Петерсон Л.Г., Кочемасова Е.Е.
- Algebra, 7 sinf, Akmalov A., Saparboyev J., 2022
- Matematika, 6 sinf, Ismailov Sh., Aroyev D., 2022
- Геометрия, 10-11 классы, Шарыгин И.Ф., 1999
- Игралочка, Математика для детей 3-4 лет, Часть 1, Петерсон Л.Г., Кочемасова Е.Е.
- Учиться на пятерки по математике, Как?, Костромина С.Н., 2008
- Учимся писать цифры (для детей 5-6 лет), Бортникова Е.Ф., 2012
- Тетрадь, Складываем и вычитаем, Для детей 5-6 лет, Бортникова Е.Ф.