Теория колебаний, Баев В.К., 2019.
Серия «Университеты России» позволит высшим учебным заведениям нашей страны использовать в образовательном процессе издания (в том числе учебники и учебные пособия) по различным дисциплинам, подготовленные преподавателями лучших университетов России и впервые опубликованные в издательствах университетов. Все представленные в этой серии работы прошли экспертную оценку учебно-методического отдела издательства и публикуются в оригинальной редакции.
Изложены методы математического моделирования работы электрофизических установок и их узлов, используемых инженерами при их разработках и проектировании. Материал пособия разбит на три части. В первой части рассматриваются методы построения математических моделей систем, а во второй — методы их анализа. В третьей части приводятся примеры решения задач с помощью методов теории колебаний.
Пособие предназначено для студентов, специализирующихся по таким направлениям электрофизики как укорительная техника, физика пучков заряженных частиц, радиофизика, СВЧ-электроника.
Электромеханические аналогии.
В этом параграфе будет рассмотрен очень важный вопрос, а именно: каким образом изложенная выше методика построения математических моделей, которая в основном иллюстрировалась на примерах из механики, может быть распространена на другие физические системы?
Идея перехода к другим физическим системам довольно проста. Из класса рассматриваемых систем выделяются простейшие. к которым предъявляются следующие два требования: I) эти системы должны нести на себе все признаки рассматриваемого класса систем;2) они должны иметь строгое математическое описание, с помощью которого строятся математические аналогии рассмотренного выше аппарата, как то обобщенные координаты, кинетическая и потенциальная энергия, силы трения и т.п.
В качестве примера рассмотрим электрические системы и по предложенной схеме построим аналогии, которые назовем электромеханическими.
СОДЕРЖАНИЕ.
Предисловие.
Часть 1. Методы построения математически моделей систем.
1.1. Обобщенные координаты.
1.2. Связи.
1.3. Функция Лафанжа.
1.4. Принцип наименьшего действия (принцип Гамильтона).
1.5. Уравнения Лафанжа.
1.6. Формула изменения полной энергии системы. Классификация сил.
1.7. Обобщенный потенциал.
1.8. Уравнения Аппеля для неголономных систем.
1.9. Канонические уравнения Гамильтона.
1.10. Уравнения Рауса.
1.11. Циклические координаты.
1.12. Интегралы уравнений движения.
1.13. Канонические преобразования.
1.14. Инварианты.
1.15. Уравнение Гамильтона — Якоби.
1.16. Теорема Пуанкаре.
1.17. Электромеханические аналогии.
Часть 2. Методы анализа математических моделей систем.
Глава 2.1. Линейные системы с постоянными параметрами.
2.1.1. Собственное движение консервативных систем.
2.1.2. Движение в поле внешних сил.
2.1.3. Движение при наличии диссипативных сил.
2.1.4. Критерии устойчивости систем.
Глава 2.2. Линейные системы с переменными параметрами.
2.2.1. Частные случаи.
2.2.2. О некоторых достаточных условиях устойчивости движения.
2.2.3. Общие соотношения для решений линейного дифференциального уравнения с переменным коэффициентом.
2.2.4. Уравнение Хилла.
2.2.5. Диаграмма устойчивости.
2.2.6. Матричный метод определения условий устойчивости решений уравнения Хилла.
2.2.7. Другие способы выявления устойчивых решений уравнения Хилла.
2.2.8. Системы с медленно изменяющимися параметрами.
Глава 2.3. Нелинейные системы.
2.3.1. Качественный анализ с помощью фазового пространства.
2.3.2. Метод усреднения по быстрым осцилляциям.
2.3.3. Укороченные уравнения.
2.3.4. Метод последовательных приближений.
2.3.5. Нелинейные резонансы.
Глава 2.4. Случайные колебания.
2.4.1. Исходные понятия.
2.4.2. Спектральная плотность мощности случайных колебаний.
2.4.3. Взаимно-корреляционная функция и взаимный энергетический спектр двух случайных колебаний.
2.4.4. Воздействие случайных колебаний на линейные цепи с постоянными параметрами.
2.4.5. Примеры.
Глава 2.5. Хаотические колебания.
2.5.1. Хаотические колебания как проявление внутренних свойств детерминированных нелинейных систем.
2.5.2. Сечения Пуанкаре.
2.5.3. Хаотические колебания, как следствие последовательности бифуркаций удвоения периода цикла.
Часть 3. Примеры приложений теории колебаний.
3.1. Геометрическая корпускулярная оптика.
3.2. Движение заряда в поле бегу щей волны.
3.3. Бетатронные колебания.
3.4. Уравнение огибающей пучка.
3.5. Продольная динамика нерелятивистского сгустка заряженных частиц в поле бегущей волны.
3.6. Полосовой фильтр.
3.7. LC-генератор на туннельном диоде.
3.8. 11араметрический генератор.
3.9. Магнетронный автогенератор.
3.10. Динамика пучков заряженных частиц в магнитосфере Земли.
3.11. Динамика заряженных частиц в магнитной адиабатической ловушке.
3.12. Математическое моделирование работы линии формирования направленного тормозного излучения.
3.13. Самосогласованная динамика пучков заряженных частиц.
Список использованной литературы.
Купить .
Теги: учебник по физике :: физика :: Баев :: электрофизика
Смотрите также учебники, книги и учебные материалы:
- Аспекты теории полярона, Боголюбов Н.Н., 2004
- Инстантоны струны и конформная теория поля, Сборник статей, Белавин А.А., 2002
- Анализ размерностей, Бриджмен П., 2019
- Теория плазмы, Трубников Б.А.
- Основы аналогового и цифрового звука, Радзишевский А.Ю., 2006
- Векторный и тензорный анализ, Кумпяк Д.Е., 2007
- Основы оптической радиометрии, Иванов В.С., Золотаревский Ю.М., Котюк А.Ф., Либерман А.А., 2003
- К созданию квантовой теории поля, Основные статьи 1925-1958 годов, Дирак П.А.М., 1990