Теория аналитических функций, Том 1, Начала теории, Маркушевич А.И.

Теория аналитических функций, Том 1, Начала теории, Маркушевич А.И.

Эта книга составилась из лекций, которые автор в течение ряда лет читал студентам механико-математического факультета Московского университета. Она включает материал основного курса теории аналитических функций, краткое изложение теории эллиптических функций и дополнительные главы теории аналитических функций, содержащие принцип компактности, вопросы конформного отображения, приближения и интерполирования, элементы теории целых функций, понятие римановой поверхности и теорию аналитического продолжения.

Теория аналитических функций, Том 1, Начала теории, Маркушевич А.И.


Связность множеств. Кривые и области.
Множество Е называется связным, если при любом его разбиении на два непустых подмножества Е1 и Е2 без общих точек, по крайней мере одно из этих множеств содержит предельную точку для другого множества. Пустое множество и множество, состоящее только из одной точки, также относятся к связным. Это оправдывается, если представить определение связности в следующей отрицательной форме: множество Е называется связным, если не существует разбиения его на два непустых множества без общих точек Е1 и Е2, из которых ни одно не содержит предельных точек другого.

ОГЛАВЛЕНИЕ.
Предисловие ко второму изданию.
Из предисловия к первому изданию.
Глава первая. Основные понятия.
Глава вторая. Дифференцируемость и ее геометрический смысл. Элементарные функции.
Глава третья. Интегралы и степенные ряды.
Глава четвертая. Различные ряды. Вычеты. Обратные и неявные функции.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория аналитических функций, Том 1, Начала теории, Маркушевич А.И. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.


Дата публикации:





Теги: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2023-02-05 16:53:42