Арифметические методы синтеза быстрых алгоритмов дискретных ортогональных преобразований, Чернов В.М., 2007.
Содержание книги относится к пограничной области между информатикой (теория и практика анализа и обработки многомерных цифровых сигналов) и математикой (абстрактная алгебра и теория чисел). Результаты, изложенные в книге, затрагивают наиболее сложные, фундаментальные вопросы теории синтеза так называемых быстрых алгоритмов дискретных ортогональных преобразований и разработки на их основе эффективных методов анализа дискретной информации
Для специалистов в области цифровой обработки сигналов и изображений, в области прикладной математики, а также для студентов и аспирантов соответствующих специальностей.
Требования, предъявляемые к системам счисления.
В настоящей гл.4 мы рассмотрим возможность применения результатов, относительно недавно полученных венгерскими математиками, [4.1]-[4.3], к решению задачи, рассматривавшейся уже в гл.3 на эвристическом уровне.
Давайте перечислим те основные требования к частично уже рассмотренным в гл. 1-3 системам счисления, которые, с одной стороны, были бы «естественными» для машинного представления данных, а, с другой стороны, позволяли бы расширить круг эффективных алгоритмов решения задач, подобных рассмотренным в предыдущих главах.
ОГЛАВЛЕНИЕ.
Предисловие.
Введение.
Глава 1. Модулярная арифметика и быстрое «безошибочное» вычисление свертки.
1.1. Постановка задачи, основные идеи.
1.2. Реализация арифметических операций для модулей специального вида.
1.3. Редуцированные системы счисления в конечных полях.
1.4. Алгоритмы вычисления свертки в полях p-адических чисел.
1.5. Алгоритмы вычисления свертки в расширениях неархимедово нормированных полей.
1.6. Приложения аппроксимационной теоремы.
Глава 2. Рекуррентные системы счисления и дискретные ортогональные преобразования с рекуррентным базисом.
2.1. Постановка задачи, основные идеи.
2.2. Вспомогательные сведения, примеры.
2.3. Квазитреугольные дискретные ортогональные преобразования.
2.4. Теоретико-числовые преобразования и рекуррентные системы счисления.
2.5. Дискретное преобразование Люка–Мерсенна.
2.6. Некоторые обобщения.
Глава 3. Неоднозначность разложения на множители и параллельные алгоритмы вычисления свертки.
3.1. Введение, основные идеи.
3.2. Параллельные алгоритмы вычисления свертки по модулю составного числа Мерсенна.
3.3. Параллельные алгоритмы вычисления свертки по модулю составного числа Ферма
Глава 4. Канонические системы счисления в полях алгебраических чисел и параллельные алгоритмы вычисления свертки.
4.1. Введение, основные идеи.
4.2. Предварительные сведения.
4.3. Параллельные алгоритмы вычисления свертки в «канонических» системах счисления для квадратичных полей.
4.4. Параллельные алгоритмы вычисления свертки в канонических системах счисления для расширений высоких степеней.
Глава 5. Круговые поля и редукция Галуа дискретных ортогональных преобразований.
5.1. Постановка задачи, основная идея.
5.2. Вспомогательные сведения из теории Галуа круговых полей.
5.3. Дискретные ортогональные преобразования с базисами из периодов полей деления круга.
5.4. Редукция Галуа дискретных преобразований, порожденных периодами круговых полей.
5.5. Некоторые замечания об эффективности алгоритмов Рейдера–Винограда.
Глава 6. Гиперкомплексные алгебры и совмещенные алгоритмы дискретных ортогональных преобразований.
6.1. Постановка задачи, основная идея.
6.2. Вспомогательные сведения.
6.3. Примеры синтеза совмещенных БА многомерных ДПФ.
6.4. Алгоритмы дискретных ортогональных преобразований, реализуемые в циклотомических кодах.
6.5. Совмещенное вычисление спектров многоканального изображения.
6.6. Алгоритм ДПФс «экстремальным» совмещением в групповой алгебре циклической группы.
Глава 7. Арифметические свойства значений тригонометрических функций и быстрые алгоритмы дискретного косинусного преобразования.
7.1. Постановка задачи, основные идеи.
7.2. Сложность операции умножения в конечномерных алгебрах.
7.3. Алгебраические принципы синтеза алгоритмов ДКП коротких длин.
7.4. Примеры алгоритмов ДКП с минимальной мультипликативной сложностью.
7.5. Некоторые экспериментальные результаты.
Глава 8. Канонические системы счисления и многомерное обобщение количественной задачи Бореля.
8.1. Постановка задачи, основная идея.
8.2. Предварительные сведения из теории рекуррентных функций в конечных полях.
8.3. Некоторые свойства пополнения алгебр Q(√d).
8.4. Основная теорема о равномерном распределении в фундаментальных областях.
Глава 9. Показательные функции в конечных полях и дискретные преобразования с «хаотическими» базисами.
9.1. Постановка задачи, основная идея.
9.2. Одномерные M-преобразования.
9.3. Двумерные преобразования с хаотическим базисом.
Купить .
Теги: учебник по математике :: математика :: Чернов
Смотрите также учебники, книги и учебные материалы:
- Простейшие примеры математических доказательств, Успенский В.А., 2009
- Дополнительные главы линейной алгебры, Беклемишев Д.В., 1983
- Приглашение на Математический праздник, Ященко И.В., 2005
- Асимптотическая математика и синергетика, Путь к целостной простоте, Андрианов И.В., Баранцев Р.Г., Маневич Л.И., 2004
- Математический анализ для школьников, Понтрягин Л.С., 1980
- Философия и основания математики, Перминов В.Я., 2001
- Парадокс Гиббса с точки зрения математика, монография, Игнатович В.Н., 2010
- Теория игр и модели математической экономики, Васин А.А., Морозов В.В., 2005