Технологические комплексы интегрированных процессов производства изделий электроники, Достанко А.П., 2016.
Рассмотрены и обобщены результаты исследований и разработок в области создания и функционирования современных технологических комплексов интегрированных процессов производства изделий электроники, начиная от очистки поверхности подложек ультразвуком, СВЧ-плазмохимической обработки, магнетронного электронно-лучевого и импульсного лазерного формирования структур и состава слоев, высокочастотного локального нагрева, диффузионной сварки, а также интегрированного контроля микро- и наноструктур.
Предназначена для инженерно-технических работников предприятий электронной и других отраслей промышленности, специалистов научно-исследовательских институтов, аспирантов, магистрантов и студентов старших курсов технических вузов.
Принцип действия и рабочие параметры магнетронных распылительных систем.
Процесс ионного распыления известен в течение ряда лет. и. несмотря на некоторые ограничения, этот метод успешно используется для вакуумного нанесения тонких пленок различных материалов [1. 2]. Тем не менее недостатком процесса ионного распыления являются низкие скорости нанесения, низкая эффективность ионизации в плазме и относительно сильный нагрев подложек. Во многом эти ограничения были преодолены разработкой метода магнетронного распыления.
Метод магнетронного распыления получил быстрое развитие в последние тридесятилетия. когда он установился как один из основных вариантов процесса ионно-плазменного нанесения тонкопленочных слоев различного функционального назначения [3-4]. Примерами являются твердые, износостойкие, низкофрикционные, антикоррозионные, декоративные покрытия и покрытия со специфическими оптическими или электрическими свойствами [5]. Применяемый первоначально для нанесения пленок металлов и сплавов метод впоследствии получил дальнейшее развитие. Были созданы конструкции магнетронов с планарной, конусной и цилиндрической мишенью. Для нанесения компонентных пленок были разработаны методы реактивного, импульсного и ВЧ-магнетронного распыления. Увеличение усилий по разработке магнетронных распылительных систем и процессов магнетронного распыления было обусловлено растущим спросом на функциональные высококачественные покрытия в разнообразных секторах рынка.
СОДЕРЖАНИЕ.
Введение.
Глава 1. Автоматизированные технологические комплексы удаления загрязнений с микропрофильных поверхностей оптико-электронных изделий.
1.1. Методы и устройства удаления загрязнений с микропрофильных поверхностей.
1.2. Ультразвуковые технологические системы для удаления загрязнений.
1.3. Автоматизированные технологические комплексы удаления загрязнений с микрорельефных поверхностей оптико-электронных изделий.
Список литературы к главе 1.
Глава 2. Технологические системы «мягкой» СВЧ-вакуумно-плазменной обработки материалов.
2.1. Конструктивные особенности СВЧ-разрядных систем резонаторного типа.
2.2. Особенности возбуждения и поддержания СВЧ-разряда низкого вакуума в плазмотронах с аппликаторами резонаторного типа.
2.3. Схемотехнические решения источников питания СВЧ-магнетронов в составе плазменного технологического оборудования.
Список литературы к главе 2.
Глава 3. Магнетронные системы формирования функциональных слоев в изделиях микроэлектроники.
3.1. Принцип действия и рабочие параметры магнетронных распылительных систем.
3.2. Высоковакуумное магнетронное распыление.
3.3. Методы генерации магнетронного разряда при пониженном давлении.
3.4. Самораспыление.
3.5. Ионно-ассистированное магнетронное распыление.
Список литературы к главе 3.
Глава 4. Высокочастотные технологические системы формирования контактных соединений при сборке изделий электроники.
4.1. Методы и устройства ВЧ-нагрева при сборке изделий электроники.
4.2. Технологические модули ВЧ-нагрева в электронике.
4.3. Программное управление температурными профилями ВЧ-нагрева при формировании контактных соединений в изделиях электроники.
Список литературы к главе 4.
Глава 5. Технологические процессы и оборудование для производства микроэлектромеханических систем.
5.1. Диффузионная сварка подложек микроэлектромеханических систем.
5.2. Установка диффузионной сварки МЭМС ЭМ-4044.
5.3. Лазерная микрообработка подложек СВЧ-модулей.
5.4. Оборудование лазерной микрообработки подложек МЭМС ЭМ-290.
Список литературы к главе 5.
Глава 6. Технологические комплексы контроля топологии микро- и наноструктур.
6.1. Виды контроля в процессах формирования микро- и наноструктур.
6.2. Контроль критических размеров и координат элементов при формировании топологии микро- и наноструктур.
6.3. Контроль на соответствие проектным данным.
6.4. Технология изготовления фотошаблонов с расширенным набором контрольных операций.
Список литературы к главе 6.
Глава 7. Кластерный нанотехнологический комплекс с импульсным лазерным осаждением пленок.
7.1. Характеристики и назначение комплекса.
7.2. Аппаратура контроля параметров нанесенных слоев.
7.3. Физико-химические процессы при лазерной абляции.
7.4. Алгоритм процессов импульсного лазерного осаждения пленок.
7.5. Влияние параметров импульсного лазерного осаждения на свойства пленок.
7.6. Применение нанокристаллических пленок VOх в ИК-фотоприемниках, сенсорах и мемристорах.
Список литературы к главе 7.
Заключение.
Приложение.
Купить .
Теги: учебник по электронике :: электроника :: электротехника :: Достанко
Смотрите также учебники, книги и учебные материалы:
- Занимательная электротехника на дому, Рюмин В.В.
- Электронные свойства и применение нанотрубок, Дьячков П.Н., 2020
- Электронные свойства и применение нанотрубок, Дьячков П.Н., 2012
- Материаловедение и технологии электроники, Капустин В.И., Сигов А.С., 2014
- Основы конструирования и технологии производства радиоэлектронных средств, Алдонин Г.М., Дашкова А.К., Зандер Ф.В., 2019
- Технология ремонта и обслуживания электрооборудования, учебное пособие, Дайнеко В.А., 2017
- Всережимное математическое моделирование релейной зашиты электроэнергетических систем, Андреев М.В., Рубан Н.Ю., Гордиенко И.С., 2016
- Электронные модули стиральных машин АТЛАНТ, CANDY, ELECTROLUX, ZANUSSI, SAMSUNG, VESTEL, WHIRLPOOL, Родин А.В., Тюнин Н.А., 2016