В пособии (8-е изд. — 2003 г.) приведены необходимые теоретические сведения и формулы, даны решения типовых задач, помещены задачи для самостоятельного решения, сопровождающиеся ответами и указаниями. Большое внимание уделено методам статистической обработки экспериментальных данных.
Для студентов вузов. Может быть полезно лицам, применяющим вероятностные и статистические методы при решении практических задач.
Основные понятия. Характеристики случайных функций.
Случайной функцией X(t) называют функцию неслучайного аргумента t, которая при каждом фиксированном значении аргумента является случайной величиной.
Сечением случайной функции X(t) называют случайную величину» соответствующую фиксированному значению аргумента случайной функции.
Реализацией случайной функции X(t) называют неслучайную функцию аргумента t, которой может оказаться равной случайная функция в результате испытания.
Таким образом» случайную функцию можно рассматривать как совокупность случайных величин {X(t)}, зависящих от параметра t, или как совокупность ее возможных реализаций.
Характеристиками случайной функции называют ее моменты, которые являются неслучайными функциями.
Математическим ожиданием случайной функции X(t) называют неслучайную функцию тх(t), значение которой при каждом фиксированном значении аргумента равно математическому ожиданию сечения» соответствующего этому же фиксированному значению аргумента: mx(t)=M[X(t)].
ОГЛАВЛЕНИЕ.
ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ.
Глава первая. Определение вероятности.
§1. Классическое и статистическое определения вероятности.
§2. Геометрические вероятности.
Глава вторая. Основные теоремы.
§1. Теорема сложения и умножения вероятностей.
§2. Вероятность появления хотя бы одного события.
§3. Формула полкой вероятности.
§4. Формула Бейеса.
Глава третья. Повторение испытаний.
§1. Формула Бернулли.
§2. Локальная и интегральная теоремы Лапласа.
§3. Отклонение относительной частоты от постоянной вероятности в независимых испытаниях.
§4. Наивероятнейшее число появлений события в независимых испытаниях.
§5. Производящая функция.
ЧАСТЬ ВТОРАЯ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.
Глава четвертая. Дискретные случайные величины.
§1. Закон распределения вероятностей дискретной случайной величины. Законы биномиальный и Пуассона.
§2. Простейший поток событий.
§3. Числовые характеристики дискретных случайных величин.
§4. Теоретические моменты.
Глава пятая. Закон больших чисел.
§1. Неравенство Чебышева.
§2. Теорема Чебышева.
Глава шестая. Функции и плотности распределения вероятностей случайных величин.
§1. Функция распределения вероятностей случайной величины.
§2. Плотность распределения вероятностей непрерывной случайной величины.
§3. Числовые характеристики непрерывных случайных величин.
§4. Равномерное распределение.
§5. Нормальное распределение.
§6. Показательное распределение и его числовые характеристики.
§7. Функция надежности.
Глава седьмая. седьмая. Распределение функции одного и двух случайных аргументов.
§1. Функция одного случайного аргумента.
§2. Функция двух случайных аргументов.
Глава восьмая. Система двух случайных величин.
§1. Закон распределения двумерной случайной величины.
§2. Условные законы распределения вероятностей составляющих дискретной двумерной случайной величины.
§3. Отыскание плотностей и условных законов распределения составляющих непрерывной двумерной случайной величины.
§4. Числовые характеристики непрерывной системы двух случайных величин.
ЧАСТЬ ТРЕТЬЯ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ.
Глава девятая. Выборочный метод.
§1. Статистическое распределение выборки.
§2. Эмпирическая функция распределения.
§3. Полигон и гистограмма.
Глава десятая. Статистические оценки параметров распределения.
§1. Точечные оценки.
§2. Метод моментов.
§3. Метод наибольшего правдоподобия.
§4. Интервальные оценки.
Глава одиннадцатая. Методы расчета сводных характеристик выборки.
§1. Метод произведений вычисления выборочных средней и дисперсии.
§2. Метод сумм вычисления выборочных средней и дисперсии.
§3. Асимметрия и эксцесс эмпирического распределения.
Глава двенадцатая. Элементы теории корреляции.
§1. Линейная корреляция.
§2. Криволинейная корреляция.
§3. Ранговая корреляция.
Глава тринадцатая. Статистическая проверка статистических гипотез.
§1. Основные сведения.
§2. Сравнение двух дисперсий нормальных генеральных совокупностей.
§3. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности.
§4. Сравнение двух средних генеральных совокупностей, дисперсии которых известны (большие независимые выборки).
§5. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки).
§6. Сравнение выборочной средней с гипотетической генеральной средней нормальной совокупности.
§7. Сравнение двух средних нормальных генеральных совокупностей с неизвестными дисперсиями (зависимые выборки).
§8. Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события.
§9. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта.
§10. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
§11. Сравнение двух вероятностей биномиальных распределений.
§12. Проверка гипотезы о значимости выборочного коэффициента корреляции.
§13. Проверка гипотезы о значимости выборочного коэффициента ранговой корреляции Спирмена.
§14. Проверка гипотезы о значимости выборочного коэффициента ранговой корреляции Кендалла.
§15. Проверка гипотезы об однородности двух выборок по критерию Вилкоксона.
§16. Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона.
§17. Графическая проверка гипотезы о нормальном распределении генеральной совокупности. Метод спрямленных диаграмм.
§18. Проверка гипотезы о показательном распределении генеральной совокупности.
§19. Проверка гипотезы о распределении генеральной совокупности по биномиальному закону.
§20. Проверка гипотезы о равномерном распределении генеральной совокупности.
§21. Проверка гипотезы о распределении генеральной совокупности по закону Пуассона.
Глава четырнадцатая. Однофакторный дисперсионный анализ.
§1. Одинаковое число испытаний на всех уровнях.
§2. Неодинаковое число испытаний на различных уровнях.
ЧАСТЬ ЧЕТВЕРТАЯ МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН.
Глава пятнадцатая. Моделирование (разыгрывание) случайных величин методом Монте-Карло.
§1. Разыгрывание дискретной случайной величины.
§2. Разыгрывание полной группы событий.
§3. Разыгрывание непрерывной случайной величины.
§4. Приближенное разыгрывание нормальной случайной величины.
§5. Разыгрывание двумерной случайной величины.
§6. Оценка надежности простейших систем методом Монте-Карло.
§7. Расчет систем массового обслуживания с отказами методом Монте-Карло.
§8. Вычисление определенных интегралов методом Монте-Карло.
ЧАСТЬ ПЯТАЯ СЛУЧАЙНЫЕ ФУНКЦИИ.
Глава шестнадцатая. Корреляционная теория случайных функций.
§1. Основные понятия. Характеристики случайных функций.
§2. Характеристики суммы случайных функций.
§3. Характеристики производной от случайной функции.
§4. Характеристики интеграла от случайной функции.
Глава семнадцатая. Стационарные случайные функции.
§1. Характеристики стационарной случайной функции.
§2. Стационарно связанные случайные функции.
§3. Корреляционная функция производной от стационарной случайной функции.
§4. Корреляционная функция интеграла от стационарной случайной функции.
§5. Взаимная корреляционная функция дифференцируемой стационарной случайной функции и ее производных.
§6. Спектральная плотность стационарной случайной функции
§7. Преобразование стационарной случайной функции стационарной линейной динамической системой.
Ответы.
Приложения.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Руководство к решению задач по теории вероятностей и математической статистике, Гмурман В.Е., 2004 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - pdf - Яндекс.Диск.
Дата публикации:
Теги: учебник по математике :: математика :: Гмурман
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
- Теория вероятностей и математическая статистика, Ниворожкина Л.И., Морозова З.А., 2008
- Итерационные методы решения задач оптимального управления, Срочко В.А., 2000
- Современные математические модели конвекции, Андреев В.К., Гапоненко Ю.А., Гончарова О.Н., Пухначев В.В., 2008
Предыдущие статьи:
- Геометрия, методические рекомендации, 7 класс, учебное пособие для общеобразовательных организаций, Вернер А.Л., Рыжик В.И., Ходот Т.Г., 2017
- Алгебра, 9 класс, учебник для общеобразовательных организаций, Дорофеев Г.В., Суворова С.Б., Бунимович Е.А., 2016
- Поурочные разработки по алгебре, к учебнику Макарычева Ю.Н., 8 класс, Рурукин А.Н., 2017
- Поурочные разработки по математике, к УМК Виленкина Н.Я., 5 класс, Попова Л.П., 2017