Апология математики, Успенский В.А.
Фрагмент из книги:
"Человек отличается от свиньи, в частности, тем, что ему иногда хочется поднять голову и посмотреть на звёзды”. Это изречение принадлежит Виктору Амбарцумяну (в 1961 - 1964 гг. президенту Международного астрономического союза). А почти за двести лет до того на ту же тему высказался Иммануил Кант. Кант поставил звёздное небо, по силе производимого впечатления, на один уровень с пребывающим внутри человека, и прежде всего внутри самого Канта, нравственным законом. Эти высказывания объявляют усеянное звёздами небо частью общечеловеческой духовной культуры и, более того, такой её частью, которая для всякого человека должна быть обязательной. Трудно представить человека, не впечатлявшегося видами неба. (Впрочем, воспоминания переносят меня в осень 1947 года, на лекцию по астрономии для студентов первого курса механико-математического факультета МГУ. Лекцию читает профессор Куликов. Он делает нам назидание. “В прошлом веке профессор Киевского университета Митрофан Хандриков, - говорит профессор Куликов, - на экзамене спросил студента, каков видимый размер Луны во время полнолуния, и получил ответ, что тот не может этого знать, поскольку никогда не видал Луны”.).
Теорема Пифагора и теорема Ферма.
В кажущемся противоречии с настойчивым подчёркиванием, что в данном очерке нас интересует именно непрактический, неприкладной аспект математики, мы предполагаем весьма и весьма поучительным включение в «джентльменский набор» математических представлений знание того, почему треугольник со сторонами 3, 4, 5 называется египетским. А всё дело в том, что древнеегипетские строители пирамид нуждались в способе построения прямого угла. Вот требуемый способ. Верёвка разбивается на 12 равных частей, границы между соседними частями помечаются, а концы веревки соединяются. Затем верёвка натягивается тремя людьми так, чтобы она образовала треугольник, а расстояния между соседними натягивателями составляли бы, соответственно, 3 части, 4 части и 5 частей. В таком случае треугольник окажется прямоугольным, в коем стороны 3 и 4 будут катетами, а сторона 5 - гипотенузой, так что угол между сторонами 3 и 4 будет прямым. Боюсь, что большинство читателей в ответ на вопрос «Почему треугольник окажется прямоугольным?» сошлётся на теорему Пифагора: ведь три в квадрате плюс четыре в квадрате равно пяти в квадрате. Однако теорема Пифагора утверждает, что если треугольник прямоугольный, то в этом случае сумма квадратов двух его сторон равна квадрату третьей. Здесь же используется теорема, обратная к теореме Пифагора: если сумма квадратов двух сторон треугольника равна квадрату третьей, то в этом случае треугольник прямоугольный. (Не уверен, что эта обратная теорема занимает должное место в школьной программе.).
Кажущееся противоречие, упомянутое в начале абзаца, заключается в том, что, обещав говорить о неутилитарном аспекте математики, мы сразу же перешли к её практическому применению. Оно потому названо кажущимся, что описанное применение обратной теоремы Пифагора принадлежит далёкому прошлому. Сейчас едва ли кто-либо строит прямой угол указанным способом: этот способ переместился из мира практики в мир идей - как и вообще многие воспоминания о материальной культуре прошлого вошли в духовную культуру настоящего.
Купить .
Теги: учебник по математике :: математика :: Успенский
Смотрите также учебники, книги и учебные материалы:
- Элементы теории графов, Теория Графов, Lazarev А., 2010
- Математические модели динамических систем, Асанов А.З., 2007
- Теория графов, Алексеев В.Е., Захарова Д.В., 2012
- Математическая логика и автоматическое доказательство теорем, Чень Ч., Ли Р., 1983
- Теория алгебр Ли, Топология групп Ли, Гандакин С.Г., 1962
- Трехмерная топология и геометрия, Тёрстон У., 2001
- Математическая биология, том 2, Пространственные модели и их приложения биомедицине, Мюррей Д., 2011
- Математическая биология, том 1, Введение, Мюррей Д., 2009