Математический анализ в задачах и упражнениях, учебное пособие, Виноградова И.А., Олехник С.Н., Садовничий В.А., 1991.
Пособие составлено на материале занятий по курсу математического
анализа на II курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Перед задачами приводятся развернутые методические указания. В них даны все используемые в данном параграфе определения, формулировки основных теорем, вывод некоторых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Содержание задач и упражнений согласовано с теоретическим курсом математического анализа. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б.П. Демидовича.
Для студентов математических специальностей университетов и педвузов и студентов технических вузов с углубленным изучением математического анализа.
Замена переменных в двойном интеграле. Переход к полярной и обобщенной полярной системам координат
Замена переменных в двойном интеграле приводит как к изменению подынтегрального выражения, так и к изменению множества, по которому берется интеграл. В отличие от одномерного интеграла, где связь двух промежутков интегрирования устанавливается просто, для многомерного интеграла найти множество изменения новых переменных достаточно трудно, поэтому главное внимание при выборе зависимости между новыми и старыми переменными обращается именно на нахождение этого множества. Наиболее простым случаем является тот, когда границами множества D, по которому берется интеграл, являются линии уровня достаточно гладких функций: ф1(x, у) и ф2(x, у), т. е.
ОГЛАВЛЕНИЕ.
Предисловие
Глава 1. Интегральное исчисление функций многих переменных
§ 1. Определение и общие свойства интеграла от функции f:Rn--R
§ 2. Двойной интеграл. Его геометрические и механические приложения
1. Теорема Фубини
2. Замена переменных в двойном интеграле. Переход к полярной и обобщенной полярной системам координат
3. Площадь поверхности и ее вычисление
4. Площадь плоской фигуры и объем пространственного тела
5. Механические приложения двойного интеграла
§ 3. Тройной интеграл. Его геометрические и механические приложения
1. Общие свойства. Теорема Фубини
2. Замена переменных. Переход к цилиндрическим, сферическим и обобщенным сферическим координатам
3. Объем тела
4. Механические приложения тройного интеграла
§ 4. Несобственный кратный интеграл
Задачи
Ответы
Глава II. Криволинейный и поверхностный интегралы первого рода
§ 1. Криволинейный интеграл первого рода
§ 2. Поверхностный интеграл первого рода
Задачи
Ответы
Глава III. Криволинейный и поверхностный интегралы второго рода.
Векторный анализ
§ 1. Ориентация кусочно-гладкой кривой и кусочно-гладкой поверхности
§ 2. Дифференциальные формы в курсе анализа. Интегрирование дифференциальных форм. Общие сведения
§ 3. Криволинейный интеграл второго рода
§ 4. Поверхностный интеграл второго рода
§ 5. Векторный анализ
§ 2*. Криволинейный интеграл второго рода
§ 3*. Поверхностный интеграл второго рода
§ 4*. Векторный анализ
Задачи
Ответы
Теоретические задачи
Купить .
Теги: Виноградова :: Олехник :: Садовничий :: 1991 :: математика
Смотрите также учебники, книги и учебные материалы:
- Алгебра, 9 класс, Практический справочник с видеосопровождением, Лукина Л., 2015
- Геометрия в схемах и таблицах, Третьяк И.В., 2016
- Математика, Сборник задач по базовому курсу, учебно-методическое пособие, Золотарёва Н.Д., 2015
- Считаем без ошибок, для начальной школы, Берестова Е.В., Марченко И.С., 2012
- Кружок по теории вероятностей, Высоцкий И.Р., 2017
- Алгебра, 7 класс, дидактические материалы, Васюк Н.В., Мартиросян М.А., Слепенкова Е.В., Уединов А.Б., Чулков П.В.
- Учебно-методическое пособие по математике, 2010
- Математика в схемах и таблицах, Третьяк И.В., 2017