Уравнения математической физики, Ильин A.M., 2005.
В учебном пособии излагается содержание курса лекций по уравнениям математической физики. Предназначается для студентов математических и физических факультетов университетов. Некоторые разделы пособия мало освещаются в других учебниках и могут быть полезны для изучения магистрантами и аспирантами.
Обобщённые решения краевых задач для уравнения малых колебаний струны.
Выше рассматривались так называемые классические решения краевых задач, то есть функции, обладающие производными достаточно высокого порядка в области (или даже в замкнутой области) и удовлетворяющие уравнению и краевым (начальным и граничным) условиям. Для Доказательства существования таких решений требуются довольно жёсткие условия на начальные, граничные функции и на правую часть уравнения. Эти условия зачастую являются излишними. Да и требование достаточной гладкости решения не всегда является оправданным. Например, при рассмотрении малых колебаний струны разумно считать, что её начальное положение описывается непрерывной, лишь кусочно непрерывно дифференцируемой функцией, график которой имеет угловые точки. Тогда классического решения УМКС нс существует, но разумно считать, что формула Даламбера (2.6) правильно описывает физический процесс. Такие соображения приводят к определению обобщённых решений краевых задач, которое даёт возможность получать разумные решения при слабых ограничениях на условия задачи.
Класс обобщённых решений выбирается шире множества классических решений. Возможны разные варианты выбора такого класса. Но при этом естественно требовать, чтобы были выполнены следующие разумные требования:
1. Если классическое решение существует, то оно должно быть также и обобщенным решением задачи (чтобы имело смысл понятие ”обобщённое”).
2. Класс обобщённых решений должен быть шире класса классических решений. Обобщенное решение должно существовать при более слабых ограничениях, чем классическое (иначе зачем бы надо было его вводить?).
Купить .
Теги: учебник по математике :: математика :: Ильин
Смотрите также учебники, книги и учебные материалы:
- Курс математического анализа, том 2, Кудрявцев Л.Д., 1981
- Курс математического анализа, том 1, Кудрявцев Л.Д., 1981
- Математика, занятия школьного кружка, 5-6 класс, Шейнина О.С., Соловьева Г.М., 2002
- Основная теорема арифметики, Калужкин Л.А., 1969
- Высшая математика для экономистов, Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н., 2001
- Алгебра, 7 класс, Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б., 2014
- Прикладная математика и информатика, Костомаров Д.П., Дмитриева В.И., 2003
- Применение компьютерной алгебры при проектировании транспортного космического аппарата, Зеленцов В.В., Щеглов Г.А.