Излагаются основные понятия об уравнениях в частных производных. Охват материала соответствует программе университетского курса для студентов элитного технического образования Томского политехнического университета в рамках курса математики.
Предназначено для студентов, аспирантов, преподавателей, научных сотрудников.
Примеры краевых условий.
1. Если задано, что источник тепла находится в контакте с одним из концов стержня и поддерживает на нем постоянную температуру и0, то представляется очевидным, что по мере удаления от источника температура в стержне не будет неограниченно возрастать. Соответствующие краевые условия имеет вид
u(0, t) = u0, u(x, t) < ∞,
где u(x,t) - температура в стержне на расстоянии х от источника в момент времени t.
2. Краевое условие вида и(х, 0) = φ(x) может интерпретироваться как задание в начальный момент температурного распределение в стержне.
3. Согласно классификации краевых условий, под условиями Дирихле понимается задание функции u(x,y,z,t) в каждой точке границы области в начальный момент времени. В частности, задача Дирихле для уравнения Лапласа в круге радиуса R включает в себя уравнение Лапласа с граничным условием вида
u(r,φ)|г=R=f(φ),
где r и φ - полярные координаты точки (х,у); f(φ) - заданная функция.
Оглавление
Глава 1. Введение
1. Начальные понятия
2. Примеры краевых условий
3. Простейшие уравнения в частных производных
Глава 2. Уравнения первого порядка
1. Линейные и квазилинейные уравнения
2. Методы интегрирования нормальных систем
3. Задача Коши
Глава 3. Уравнения второго порядка
1. Классификация уравнений второго порядка. Приведение уравнений к каноническому виду
2. Основные уравнения математической физики
3. Метод разделения переменных. Параболические уравнения с начальным условием
3.1. Примеры
4. Метод разделения переменных. Параболические уравнения с начальным и граничным условиями
5. Задача Дирихле для уравнения Лапласа. Интеграл Пуассона
6. Другой подход к задаче Дирихле для уравнения Лапласа в круге
7. Применение методов операционного исчисления. Нестационарные уравнения параболического типа
Глава 4. Дополнительные примеры
1. Общие решения уравнений.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Уравнения в частных производных, Конев В.В., 2011 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - pdf - Яндекс.Диск.
Дата публикации:
Теги: учебник по математике :: математика :: Конев
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Математические методы и модели в теории информационно-измерительных систем, Буренок В.М., Найденов В.Г., Поляков В.И., 2011
- Математика для гуманитариев, Грес П.В., 2007
- Элементы дискретной математики, Ананичев Д.С., Андреева И.Ю., Гредасова Н.В., Костоусов К.В., 2015
- Введение в теорию оптимального поиска, Хеллман О., 1985
Предыдущие статьи:
- Занимательная математика, Гамов Г., Стерн М., 2001
- Математическое моделирование в технике, учебник для вузов, Зарубина В.С., Крищенко А.П., 2003
- Основные методы решения практических задач в курсе уравнения математической физики, Кудряшов С.Н., Радченко Т.Н., 2011
- Очень краткий конспект лекций по математической логике, Николенко С., 2010