Арифметика помогает алгебре, Романовский В.И., 2007.
На примере решении большого числа задач, в т. ч. задач повышенной сложности, показаны возможности и преимущества арифметического метода решения. Книга может быть полезной школьникам на разных этапах обучения, включая подготовку к сдаче ЕГЭ. Знакомство с книгой рекомендуется преподавателям математики для проведения занятий в классах и для факультативной работы с учащимися.
Фрагмент из книги.
Для больших чисел предпочтительней иной метод, основанный на следующем свойстве натуральных чисел: любое натуральное число есть среднее арифметическое двух соседних чисел либо двух чисел, расположенных в числовом ряду по обе стороны от данного числа и равноудалённых от него. При нечётном числе членов ограниченного ряда средний член ряда равен полусумме первого и последнего членов, либо второго и предпоследнего, и т.д. Сумма такого ряда, согласно сказанному выше, равна произведению среднего члена ряда на число членов.
В рассматриваемом случае сумма ряда равна 35 - 5 х 7. Число членов суммируемого ряда на 1 меньше последнего члена ряда (к числу ударов, прозвучавших на исходе часа, добавляется удар, отбитый в получасовом интервале). Значит, это число заведомо больше среднего члена ряда. Отсюда следует, что число членов суммируемого ряда равно 7, и 35-й удар часов возвестил наступление восьмого часа.
Замечание. Покажем, что исследуемый числовой ряд не может иметь чётное число членов. При чётном числе членов суммируемый ряд может быть разбит на пары чисел с равными суммами (см. первую часть задачи). Сумма такого ряда равна произведению суммы первого и последнего членов ва число таких сумм (оно вдвое меньше численности ряда). Сумма рассматриваемого ряда 35 = 5 х 7. Если предположить, что число членов в этом ряду — чётное, то таких членов должно быть по меньшей мере 5 х 2 = 10, и в этом случае число 7 должно было бы представлять собой сумму первого и последнего членов, тогда как последний член был бы равен 11, т.е. на 1 больше числа суммируемых членов. Следовательно, наше предположение неверно.
СОДЕРЖАНИЕ
Введение.
Раздел 1. Повторяем арифметику
Глава 1.1. Сложение.
Глава 1.2. Умножение.
Глава 1.3. Деление и делимость.
Глава 1.4. Алгоритм Евклида.
Глава 1.5. Отношения и пропорции.
Глава 1.6. Простые дроби.
Глава 1.7. Проценты.
Глава 1.8. Среднее арифметическое.
Глава 1.9. Немного логики.
Раздел 2. На границе с алгеброй
Глава 2.1. Зеркальные числа и их свойства.
Глава 2.2. От результата — к исходному числу.
Глава 2.3. "Двухкомпонентные" задачи, или смеси
Глава 2.4. Совместная работа.
Глава 2.5. Движение.
Глава 2.6. Кому сколько лет?.
Глава 2.7. Задачи на неизменное произведение.
Глава 2.8. Начинаем с конца.
Вместо послесловия.
Библиография.
Купить .
Теги: Романовский :: арифметика :: алгебра :: 2007
Смотрите также учебники, книги и учебные материалы:
- Высшая математика, Элементы линейной алгебры и аналитической геометрии, том 1, Бугров Я.С., Никольский С.М., 2004
- Высшая математика, Дифференциальное и интегральное исчисление, том 2, Бугров Я.С., Никольский С.М., 2004
- Начертательная геометрия и инженерная графика, пособие, Гришель Р.П., Шнейдеров Е.Н., 2014
- Теория вероятностей и математическая статистика, практическое руководство, Дудовская Ю.Е., Якубович О.В., Боярович Ю.С., 2012
- Занимательная математика, анализ Фурье, Манга, Сибуя Митио, Хироки Харусэ, 2015
- Курс лекций по логике и теории алгоритмов, Шехтман В.Б., 2006
- Конспект лекций по математическому анализу, Шерстнев А.Н., 2003
- Дифференциальные уравнения, Тихонов А.Н., Васильева А.Б., Свешников А.Г., 2005