Курс аналитической геометрии и линейной алгебры, Александров П.С., 1979

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Курс аналитической геометрии и линейной алгебры, Александров П.С., 1979.

  Книга представляет собой учебник по объединенному курсу аналитической геометрии и линейной алгебры для университетов. Наряду с традиционной тематикой книга содержит основные сведения из многомерной аналитической геометрии, включая аффинную классификацию гиперповерхностей второго порядка. Кроме того, в книге излагаются простейшие понятия геометрии n-мерного проективного пространства.
Книга рассчитана на студентов-математиков и студентов-физиков университетов и пединститутов, а также на все категории читателей, серьезно интересующихся математикой.

Курс аналитической геометрии и линейной алгебры, Александров П.С., 1979


Комплексная плоскость и комплексное пространство.
Вся суть аналитической геометрии заключается в том, что, выбрав (скажем, на плоскости) систему координат Ое1е2, мы подмениваем точки плоскости парами (х, у) координат этих точек, а линии задаем их уравнениями вида F(x, у) = 0.

Однако уже из школьного курса алгебры мы знаем, сколь убогим получается исследование даже уравнений второй степени с одним неизвестным, если при рассмотрении их решений пользоваться лишь вещественными числами. Поэтому неудивительно, что, ограничиваясь в аналитической геометрии вещественными значениями координат, мы не построим гармонической теории, так как будем постоянно натыкаться на досадные исключения, несносные для математика. Единственный радикальный способ их избежать —это допустить в качестве возможных значений координат точек любые комплексные числа.

Купить .
Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-02 18:22:36