Курс математического анализа, в 3 томах, том 1, Кудрявцев Л.Д.

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Название: Курс математического анализа -  в 3 томах - том 1. 2003.

Автор: Кудрявцев Л.Д.

     Учебник соответствует новой программе для ВУЗов. Особое внимание в учебнике обращено на изложение качественных и аналитических методов, в нем нашли отражение и некоторые геометрические приложения анализа. Предназначается студентам университетов и физико-математических, и инженерно-физических специальностей втузов, а также студентам других специальностей для углубленной математической подготовки.

Курс математического анализа -  в 3 томах - том 1 - Кудрявцев Л.Д.

     В предлагаемом курсе математического анализа излагаются как традиционные классические методы, так и современные, которые возникли в последние десятилетия. Действительные числа вводятся аксиоматически. Этот путь дает возможность наиболее компактно и полно изложить необходимые для анализа сведения о числах. Вместе с тем он и логически наиболее совершенен, поскольку при других, так называемых «конструктивных», методах построения теории действительных чисел (когда за основу берутся бесконечные десятичные дроби, или сечения в области рациональных чисел, или классы эквивалентных фундаментальных последовательностей рациональных чисел) все равно необходимо вводить аксиому существования (непротиворечивости) множества действительных чисел, без которых проводимые построения не имеют логически завершенного характера. Поэтому проще всего сразу, исходя из аксиоматического задания действительных чисел, перейти к изучению математического анализа в собственном смысле слова.

Оглавление
Предисловие 3
Введение 7
Глава 1
Дифференциальное исчисление функций одной переменной

§ 1. Множества и функции. Логические символы 13
1.1. Множества. Операции над множествами 13
1.2*. Функции 16
1.3*. Конечные множества и натуральные числа
1.4. Группировки элементов конечного множества 29
1.5. Логические символы 33
§ 2. Действительные числа 35
2.1. Свойства действительных чисел 35
2.2*. Свойства сложения и умножения 39
2.3*. Свойства упорядоченности 47
2.4*. Свойство непрерывности действительных чисел 51
2.5*. Сечения в множестве действительных чисел 52
2.6*. Рациональные степени действительных чисел 58
2.7. Формула бинома Ньютона 60
§ 3. Числовые множества 63
3.1. Расширенная числовая прямая 63
3.2. Промежутки действительных чисел. Окрестности 64
3.3. Ограниченные и неограниченные множества 68
3.4. Верхняя и нижняя грани числовых множеств 70
3.5*. Арифметические свойства верхних и нижних граней 75
3.6. Принцип Архимеда 78
3.7. Принцип вложенных отрезков 80
3.8*. Единственность непрерывного упорядоченного поля 85
§ 4. Предел числовой последовательности 92
4.1. Определение предела числовой последовательности 92
4.2. Единственность предела числовой последовательности 100
4.3. Переход к пределу в неравенствах 101
4.4. Ограниченность сходящихся последовательностей 107
4.5. Монотонные последовательности 108
4.6. Теорема Больцано—Вейерштрасса 113
4.7. Критерий Коши сходимости последовательности 115
4.8. Бесконечно малые последовательности 118
4.9. Свойства пределов, связанные с арифметическими операциями над последовательностями 120
4.10. Изображение действительных чисел бесконечными десятичными дробями 133
4.11*. Счетные и несчетные множества 141
4.12*. Верхний и нижний пределы последовательности 149
§ 5. Предел и непрерывность функций 153
5.1. Действительные функции 153
5.2. Способы задания функций 156
5.3. Элементарные функции и их классификация 160
5.4. Первое определение предела функции 162
5.5. Непрерывные функции 172
5.6. Условие существования предела функции 177
5.7. Второе определение предела функции 179
5.8. Предел функции по объединению множеств 184
5.9. Односторонние пределы и односторонняя непрерывность 185
5.10. Свойства пределов функций 189
5.11. Бесконечно малые и бесконечно большие функции 194
5.12. Различные формы записи непрерывности
5.13. Классификация точек разрыва функции 202
5.14. Пределы монотонных функций 204
5.15. Критерий Коши существования предела функции 210
5.16. Предел и непрерывность композиции функций 212
§ 6. Свойства непрерывных функций на промежутках 216
6.1. Ограниченность непрерывных функций. Достижимость экстремальных значений 216
6.2. Промежуточные значения непрерывных функций 218
6.3. Обратные функции 221
6.4. Равномерная непрерывность. Модуль непрерывности 228
§ 7. Непрерывность элементарных функций 235
7.1. Многочлены и рациональные функции 235
7.2. Показательная, логарифмическая и степенная функции 236
7.3. Тригонометрические и обратные тригонометрические функции 246
7.4. Непрерывность элементарных функций 248
§ 8. Сравнение функций. Вычисление пределов 248
8.1. Некоторые замечательные пределы 248
8.2. Сравнение функций 253
8.3. Эквивалентные функции 264
8.4. Метод выделения главной части функции и его применение к вычислению пределов 267
§ 9. Производная и дифференциал 271
9.1. Определение производной 271
9.2. Дифференциал функции 274
9.3. Геометрический смысл производной и дифференциала 280
9.4. Физический смысл производной и дифференциала 284
9.5. Правила вычисления производных, связанные с арифметическими действиями над функциями 288
9.6. Производная обратной функции 291
9.7. Производная и дифференциал сложной функции 294
9.8. Гиперболические функции и их производные 301
§10. Производные и дифференциалы высших порядков 304
10.1. Производные высших порядков 304
10.2. Производные высших порядков суммы и произведения функций 306
10.3. Производные высших порядков от сложных функций, от обратных функций и от функций, заданных
10.4. Дифференциалы высших порядков 311
§11. Теоремы о среднем для дифференцируемых функций 313
11.1  Теорема Ферма
11.2. Теоремы Ролля, Лагранжа и Коши о средних значениях 316
§12. Раскрытие неопределенностей по правилу Лопиталя 327
12.1 Неопределенности вида 0/0
12.2  Неопределенности вида
12.3. Обобщение правила Лопиталя 337
§ 13. Формула Тейлора 339
13.1. Вывод формулы Тейлора 339
13.2. Многочлен Тейлора как многочлен наилучшего приближения функции в окрестности данной точки 344
13.3. Формулы Тейлора для основных элементарных
13.4. Вычисление пределов с помощью формулы Тейлора (метод выделения главной части) 351
§ 14. Исследование поведения функций 353
14.1. Признак монотонности функции 353
14.2. Отыскание наибольших и наименьших значений функции 356
14.3. Выпуклость и точки перегиба 365
14.5. Построение графиков функций 377
§ 15. Векторная функция 387
15.1. Понятие предела и непрерывности для векторной функции 387
15.2. Производная и дифференциал векторной функции 391
§ 16. Длина кривой 397
16.3. Ориентация кривой. Дуга кривой. Сумма кривых. Неявное задание кривых 408
16.4. Касательная к кривой. Геометрический смысл производной векторной функции 411
16.7. Физический смысл производной векторной функции 425
§17. Кривизна и кручение кривой 426
17.1. Две леммы. Радиальная и трансверсальная составляющие скорости 426
17.2. Определение кривизны кривой и ее вычисление 430
17.3. Главная нормаль. Соприкасающаяся плоскость 434
17.4. Центр кривизны и эволюта кривой 436
17.5. Формулы для кривизны и эволюты плоской кривой 437
17.6. Эвольвента 444
17.7. Кручение пространственной кривой 447
17.9. Формулы для вычисления кручения 451
Глава 2
Интегральное исчисление функций одной переменной
§18. Определения и свойства неопределенного интеграла 453

18.1. Первообразная и неопределенный интеграл 453
18.2. Основные свойства интеграла 456
18.3. Табличные интегралы 458
18.4. Интегрирование подстановкой (замена переменной) 461
18.5. Интегрирование по частям 464
18.6*. Обобщение понятия первообразной 467
§ 19. Некоторые сведения о комплексных числах и многочленах 473
19.1. Комплексные числа 473
19.2*. Формальная теория комплексных чисел 481
19.3. Некоторые понятия анализа в области комплексных чисел 482
19.4. Разложение многочленов на множители 486
19.5*. Наибольший общий делитель многочленов 490
19.6. Разложение правильных рациональных дробей на элементарные 495
§ 20. Интегрирование рациональных дробей 503
20.1. Интегрирование элементарных рациональных дробей 503
20.2. Общий случай 506
20.3*. Метод Остроградского 508
§21. Интегрирование некоторых иррациональностей 514
21.1. Предварительные замечания 514
21.2. Интегралы вида 515
21.3. Интегралы вида. Подстановки Эйлера 518
21.4. Интегралы от дифференциальных биномов 522
21.5. Интегралы вида п  Jax2 + Ьх + с
§ 22. Интегрирование некоторых трансцендентных функций 526
22.1. Интегралы виды JR(sin x,cosx)dx 526
22.2. Интегралы вида Jsinm x cos x dx 528
22.3. Интегралы вида Jsin ax cos |3x dx 530
22.4. Интегралы от трансцендентных функций, вычисляющиеся с помощью интегрирования по частям 530
22.5. Интегралы вида J.R(sh x, ch x) dx 532
22.6. Замечания об интегралах, не выражающихся через элементарные функции 532
§ 23. Определенный интеграл 533
23.1. Определение интеграла Римана 533
23.2*. Критерий Коши существования интеграла 539
23.3. Ограниченность интегрируемой функции 541
23.4. Верхние и нижние суммы Дарбу. Верхний и нижний интегралы Дарбу 543
23.5. Необходимые и достаточные условия интегрируемости 547
23.6. Интегрируемость непрерывных и монотонных функций 548
23.7*. Критерии интегрируемости Дарбу и Римана 551
23.8*. Колебания функций 556
23.9*. Критерий интегрируемости Дюбуа-Реймона 563
23.10*. Критерий интегрируемости Лебега 566
§ 24. Свойства интегрируемых функций 570
24.1. Свойства определенного интеграла 570
24.2. Первая теорема о среднем значении для определенного интеграла 583
§25. Определенный интеграл с переменными пределами
25.1. Непрерывность интеграла по верхнему пределу
25.2. Дифференцируемость интеграла по верхнему пределу интегрирования. Существование первообразной у непрерывной функции 588
25.3. Формула Ньютона—Лейбница 591
25.4. Существование обобщенной первообразной. Формула Ньютона—Лейбница для обобщенной первообразной 592
§26. Формулы замены переменной в интеграле и интегрирования по частям 596
26.1. Замена переменной 596
26.2. Интегрирование по частям 600
26.3*. Вторая теорема о среднем значении для определенного
26.4. Интегралы от векторных функций 606
§27. Мера плоских открытых множеств 608
27.1. Определение меры (площади) открытого множества 608
27.2. Свойства меры открытых множеств 612
§28. Некоторые геометрические и физические приложения определенного интеграла 618
28.1. Вычисление площадей 618
28.2*. Интегральные неравенства Гёльдера и Минковского 625
28.3. Объем тела вращения 630
28.4. Вычисление длины кривой 632
28.5. Площадь поверхности вращения 637
28.6. Работа силы 640
28.7. Вычисление статических моментов и координат центра тяжести кривой 641
§ 29. Несобственные интегралы 644
29.1. Определение несобственных интегралов 644
29.2. Формулы интегрального исчисления для несобственных интегралов 652
29.3. Несобственные интегралы от неотрицательных функций 657
29.4. Критерий Коши сходимости несобственных интегралов 665
29.5. Абсолютно сходящиеся интегралы 666
29.6. Исследование сходимости интегралов 671
29.7. Асимптотическое поведение интегралов с переменными пределами интегрирования 677
Предметно-именной указатель 685
Указатель основных обозначений 695

Купить книгу Курс математического анализа -  в 3 томах - том 1 - Кудрявцев Л.Д. -

Купить книгу Курс математического анализа -  в 3 томах - том 1 - Кудрявцев Л.Д.
Дата публикации:






Теги: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-02 22:48:37